Пәннің ОҚУ-Әдістемелік кешені «Орнықтылық теориясы»



бет1/40
Дата07.11.2022
өлшемі0,55 Mb.
#48062
  1   2   3   4   5   6   7   8   9   ...   40
Байланысты:
Ï?íí³? Î?Ó-?ä³ñòåìåë³ê êåøåí³ «Îðíû?òûëû? òåîðèÿñû»


ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ
БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ
СЕМЕЙ ҚАЛАСЫНЫҢ ШӘКӘРІМ АТЫНДАҒЫ МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ

3 деңгейлі СМЖ құжаты

ПОӘК

ПОӘК 042-14.01.20.169/03-2013



«Орнықтылық теориясы» пәніне арналған оқу-әдістемелік материалдар ПОӘК

29.08.2013 ж. №1басылым

ПӘННІҢ ОҚУ-ӘДІСТЕМЕЛІК КЕШЕНІ


«Орнықтылық теориясы»


5В060100 – «Математика» мамандығы үшін




ОҚУ-ӘДІСТЕМЕЛІК МАТЕРИАЛДАР

Семей
2014


Мазмұны



1

Глоссарийлар .............................................................................................

3

2

Дәріс оқулар ..............................................................................................

10

3

Практикалық сабақтар ..............................................................................

78

4

Ұсынылған әдебиеттер






1 ГЛОССАРИЙЛАР
Осы ОӘК тиісті анықтамалармен келесі терминдер қолданылған:




Жаңа түсініктер

Мағынасы




өлшемді матрица

  • жолдан және бағаннан тұратын тік бұрышты сандар кестесі.





Квадрат матрица.

Жол саны мен баған саны тең болса.




Матрица реті

Квадрат матрицаның жол (баған) саны тең болса




Матрица анықтауышы

Әрбір квадрат матрицаға белгілі бір ереже бойынша қойылған сан. Анықтауыш тік жақшамен белгіленеді:





2-ші ретті анықтауышты есептеу.






3-ші ретті анықтауышты есептеу







Транспонерленген матрица

  • матрицасына матрицасы транспонерленген деп аталады, егер де бағаны жолы болып табылса.





элемент мипоры.

Деп жолы мен бағаның сызып тастағандағы анықтауыш




Алгебралық толықтауыш






Жоғарғы және төменгі үшбұрышты матрица.



Деп матрицаның бас диагоналінің жоғарғы немесе төменгі элементтері нөлдік элементтері болса


Диагональді матрица

Деп бас диагональдан басқа бәрі элементтері нөлдік элемент болса.




Бірлік матрица






Матрицаны санға көбейту

матрицасын айтады өлшемді әрбір элементі -не тең.




Матрицаларды қосу

,




Матрицаларды көбейту.

  • өлшемді матрицасын өлшемді матрицаларды көбейту деп өлшемді матрицасын айтады.





Кері матрица

Мына теңдік орындалатын матрицасын айтады




Нұқсанды және нұқсансыз матрица.

Деп анықтауышы нөлге тең квадрат матрицасын нұқсанды, ал нөлге тең емес болмаса нұқсансыз.




матрица рангі

Деп минорларының ең үлкен нөлден өзгеше ретін айтады. немесе арқылы белгіленеді.




Базистік минор

-ға тең нөлден өзгеше ретін.




Жолдың сызықты комбинациясы


- кезкелген сандар.




Жолдардың сызықты тәуелділігі

, мұндағы Егер бір мезгілде нөлден өзгеше болса жолдарын айтады.




Жүйенің матрицалық түрі





1 дәріс


Орнықтылық теориясының негізгі ұғымдары
Дифференциалдық теңдеудің шешімі осы шешімді анықтайтын бастапқы берілгендерден тәуелді болатыны белгілі. Мысалы,

теңдеулер жүйесінің

шартын қанағаттандыратын шешімі

- мәндерінен тәуелді екені көрініп тұр. Демек, ол шешімді мына түрде жазуға болады:

Егер бекітілген деп есептемей параметр дер есептесек, онда бұл шешімді Коши түріндегі жалпы шешім деп атаймыз.
Шешімнің бастапқы берілгендерден қандай тәуелділікте болатынын анықтаудың маңызы зор. Әсіресе шешімнің бастапқы берілгендерден қандай жағдайда үзіліссіз тәуелділікте болатынын анықтау қажет-ақ. Себебі, дифференциалдық теңдеулер белгілі бір физикалық, механикалық, т.с.с. есептердің математикалық моделі болып табылады. Бұл есептерде бастапқы берілгендер өлшеулер арқылы табылады. Әлбетте белгілі бір дәлдікпен жуықтап анықталады. Егер шеімі бастапқы берілгендерден үзіліссіз тәуелділікте болса, өлшеу нәтижесінде кеткен аз қателер шешімді де аз өзгеріске ұшыратады.
Дифференциалдық теңдеулердің қалыпты жүйесін қарастырайық:

Мұндағы тәуелсіз айнымалы, белгісіз функциялар, ал -белгілі бір ашық облысында анықталған берілген функциялар. Мынадай векторлық белгілеулер енгізелік:


Онда қалыпты жүйе мына түрде:

жазылады. Бастапқы берілгендерді деп белгілейік. Демек

Берілген облысында функциясы бойынша үзіліссіз, ал лер бойынша үзіліссіз дифференциалданады, яғни деп есептейміз. Бұл айтылғанды қысқаша былай жазамыз: Онда облысының кез келген шенелген тұйық бөлігінде функциясы бойынша Липшиц шартын қанағаттандырады. Бұл жағдайда (1), (2) есептің жалғыз ғана шешімі болады және ол шешімді облысының шекарасына дейін (шексіз жақындау мағнасында) ұзартуға болады. Осы шешім анықталатын ең үлкен аралықты деп белгілейік. Сонда -де жататын кез келген кесіндіде (1), (2) есептің шешімі бастапқы берілгендерден үзіліссіз тәуелділікте болады. Алайда тәжірибеде шешімдер көбінесе ақырсыз аралықта қарастырылады. Ол кезде бұл қасиет орындала бермейді. Ақырсыз аралықта шешімнің -ден үзіліссіз тәуелділігін орнықтылық теориясы зерттейді. Орнықтылық теориясында шешімдер әлбетте сандар жарты осінде қарастырылады. Ол кезде енгізілетін ұғымдар мен дәлелденетін теориялық пайымдаулар үшін де дұрыс болып табылады. Ол үшін айтылатын тұжырымдарда -ны -мен ауыстыру жеткілікті.
1-анықтама. Егер кез келген және бастапқы мәні үшін табылып, (1) жүйесінің белгілі шешімі мен кез келген шешімі үшін

теңсіздігінің орындалуынан жүйенің барлық шешімдерінің
1) мәндерінде анықталса(яғни ) және
2)
теңсіздіктің орындалуы шығатын болса, онда шешімі Ляпунов бойынша кезде) орнықты деп аталады. Орнықтылық ұғымының геометриялық түсініктемесі мынадай. Кез келген бастапқы мезетінде интегралдық қисығына жақын болатын (қашықтығы -дан кем) (1) жүйесінің кез келген интегралдық қисықтары шексіз ұзартылмалы (яғни мәнінде анықталады) және қисығын айналдыра құрған барынша тар түтікшенің ішіне толығынан (бүйіріне жанаспай) орналасса, онда шешімі орнықты деп аталады. (1-сызба)






Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8   9   ...   40




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет