Вариант 21. Задача 1. Даны три последовательные вершины параллелограмма А(1;0), В(4;-2),С(6;2). Не находя координаты вершины D, найти:
уравнение стороны AD;
Записать общие уравнения найденных прямых. Построить чертеж.
Задача 2. Даны точки A(1;3;4), B(1;1;2), C(-1;2;2), D(0;1;6). Найти:
1) общее уравнение плоскости АВС;
2) общее уравнение плоскости, проходящей через точку D параллельно плоскости АВС;
3) расстояние от точки D до плоскости ABC;
4) канонические уравнения прямой АВ;
5) канонические уравнения прямой, проходящей через точку D параллельно прямой AB;
6) общее уравнение плоскости, проходящей через точку D перпендикулярно прямой AB.
Задача 3. Уравнение кривой второго порядка путем выделения полного квадрата привести к каноническому виду. Построить кривую.
Задача 4. Кривая задана в полярной системе координат уравнением .
Требуется:
найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;
построить полученные точки;
построить кривую, соединив построенные точки (от руки или с помощью лекала);
составить уравнение этой кривой в прямоугольной декартовой системе координат.
Вариант 22. Задача 1. Даны три последовательные вершины параллелограмма А(2;-1), В(-2;-3),С(-1;3). Не находя координаты вершины D, найти:
уравнение стороны AD;
уравнение высоты BK, опущенной из вершины В на сторону AD;
длину высоты BK;
уравнение диагонали BD;
тангенс угла между диагоналями параллелограмма.
Записать общие уравнения найденных прямых. Построить чертеж.
Задача 2. Даны точки A(2;0;3), B(1;1;7), C(0;1;3), D(2;-2;5). Найти:
1) общее уравнение плоскости АВС;
2) общее уравнение плоскости, проходящей через точку D параллельно плоскости АВС;
3) расстояние от точки D до плоскости ABC;
4) канонические уравнения прямой АВ;
5) канонические уравнения прямой, проходящей через точку D параллельно прямой AB;
6) канонические уравнения прямой, проходящей через точку D перпендикулярно плоскости ABC.