Л. Х. Гордон доктор биологических наук, профессор


СИГНАЛЬНАЯ ФУНКЦИЯ ЦИТОСКЕЛЕТА



Pdf көрінісі
бет27/49
Дата19.05.2022
өлшемі3,42 Mb.
#35068
1   ...   23   24   25   26   27   28   29   30   ...   49
Байланысты:
Тарчевский

СИГНАЛЬНАЯ ФУНКЦИЯ ЦИТОСКЕЛЕТА
От цитоскелета (тубулиновых микротрубочек и актино-
вых микрофиламентов) зависит морфогенез на клеточном 
уровне (ультраструктура клеток), осуществление простран-
ственно-временного контроля роста, деления и дифферен-
циации клеток [Васильев, 1996; Клячко, 1998; Медведев, 
Маркова, 1998]. Известно, что переориентация расположе-
ния микротрубочек под влиянием фитогормонов приводит 
к соответствующему изменению направленности отложе-
ния вновь синтезируемых микрофибрилл целлюлозы [Тар-
чевский, Марченко, 1987; Tarchevsky, Marchenko, 1991] и па-
раметров роста клеток, например, к замедлению или пре-
кращению удлинения клеток и их утолщению. Это может 
происходить достаточно быстро. Например, переориента-
ция микротрубочек в замыкающих клетках устьиц осущест-
вляется уже через несколько минут после начала действия 
экзогенной абсцизовой кислоты [Eun, Lee, 1997]. Ауксин и 
гиббереллины способствуют поперечному расположению 
микротрубочек по отношению к продольной оси клеток, 
цитокинины, абсцизовая кислота и этилен ориентируют мик-
ротрубочки в продольном направлении. Особенно быстро 
клетки реагируют на этилен.
В последнее время обращают все большее внимание на 
важную роль сигнальных систем не только в изменении ме-
таболизма, но и в структурных изменениях клеток и участии 
в них цитоскелета при патогенезе [Chrispeels et al., 1999; 
Volkmann, Baluska, 1999; Papakonstanti et al., 2000].
И у животных, и у растений цитоскелет - сложная сеть 
нитей, пронизывающих цитозоль, - состоит из трех основ-
ных типов структур: толстых тубулиновых микротрубочек, 
тонких актиновых нитей (филаментов) и промежуточных 
(по диаметру) нитей. От этих надмолекулярных образова-
ний, постоянно распадающихся и создаваемых заново из мо-
номерных белков, зависит движение цитозоля, органоидов 
и очертания клеток растений, а также внутриклеточный 
транспорт ряда белков. Все типы микротрубочек и актино-
вых филаментов способны связываться латерально с помо-
щью вспомогательных белков или с себе подобными или с 
другими типами структур. Белки цитоскелета и обслужива-
ющие их белки имеют консервативные последовательно-
сти, характерные и для животных, и для растений (еще один 
пример универсальности молекулярной и надмолекулярной 
структуры). Микротрубочки образуются в два этапа: снача-
ла путем димеризации а- и Р-тубулина, а затем димеры по-
лимеризуются с образованием трубчатой структуры диа-
метром 22 нм. Вспомогательные МАР-белки (microtubules 
associated proteins) 
нескольких классов значительно снижа-
ют пороговую концентрацию тубулина, необходимую для 
сборки из него микротрубочек. Спиралевидные актиновые 
нити диаметром 6-7 нм образуются из однотипных актино-
вых субъединиц с затратой АТФ. Баланс между мономер-
ными актиновыми белками и микрофибриллами обеспечи-
вается вспомогательными белками - актин-деполимеризу-
ющим фактором, кофилином и профилином. С помощью 
вспомогательного белка фодрина обеспечиваются лате-
ральное взаимодействие нитей и появление пучков микро-
фибрилл, а вспомогательный белок фил амин участвует в 
образовании сетчатой (решетчатой) структуры, скрепляя 
филаменты в местах их пересечения друг с другом. Микро-
трубочки и микрофиламенты способны участвовать в пере-
мещении вдоль своей поверхности различных структур 
(включая везикулы и органеллы) с помощью специальных 
вспомогательных белков-моторов кинезина и цитоплазма-
тического динеина.
Все эти факты приобретают для нас особое значение в 
связи с тем, что многие участники процессов функциониро-
вания, образования и деградации микротрубочек и микро-
фибрилл, а также их реориентации являются мишенями ин-
термедиатов некоторых сигнальных систем клеток. Это от-
носится к повышению в цитозоле концентраций протонов, 
ионов кальция, Са
2+
-
кальмодулина, активности МАР-киназ. 
Могут регулировать процессы полимеризации актина и ло-
кализации в клетках актиновых нитей ГТФ-связывающие


белки, протеинкиназы, протеинфосфатазы, фосфоинози-
тидфосфатазы.
Показано, что актин-деполимеризующий фактор изме-
няет активность под влиянием фосфорилирования с помо-
щью Са
2+

зависимых протеинкиназ. У арабидопсиса был 
выделен кальмодулинсвязывающий моторный вспомога-
тельный белок кинезин, причем Са
2+
-
кальмодулиновый 
комплекс этого белка с кинезином ингибировал способ-
ность микротрубочек участвовать в процессах внутрикле-
точного движения. Фосфорилирование а- и |3-тубулинов ак-
тивировалось Са
2+
-
кальмодулинзависимыми и цАМФ-зави-
симыми протеинкиназами, а также протеинкиназой С 
[Blume et al., 1997].
Абсцизовая кислота вызывала быструю деполимериза-
цию кортикальных актиновых нитей в замыкающих клет-
ках устьиц, причем этот процесс был опосредован входом в 
клетки ионов кальция [Hwang, Lee, 2001]. Деполимеризация 
медиировалась также протеинкиназами (о чем свидетельст-
вовало ее подавление стауроспорином).
Особое внимание привлекает установление факта уди-
вительного сходства трехмерной структуры цитоскелетных 
вспомогательных моторных белков с G-белками. Так как 
G-
белки могут непосредственно взаимодействовать с цито-
плазматическим доменом многих рецепторов в сигнальных 
системах (и изменять при этом свою конформацию и актив-
ность), то этот факт позволяет допускать возможность 
очень тесной связи даже между начальными звеньями сиг-
нальных систем и цитоскелетом.
Димеры тубулина имеют особенно высокое сродство с 
ос-субъединицами G-белков [Крутецкая, Лонской, 1994]. 
Обнаружено, что активатор G-белков мастопаран вызыва-
ет (предположительно, при участии фосфоинозитольной 
сигнальной системы) переход вспомогательного белка про-
филина (взаимодействующего с мономерной формой акти-
на [McCurdy et al., 2001]) из ядра в цитоплазму у клеток кор-
ней кукурузы и связанное с этим изменение структуры ак-
тиновых микрофиламентов [Baluska et al., 2001].
Выделен класс белков - пипмодулинов (связывающихся 
с фосфоинозитидными фосфолипидами клеточной мембра-
ны), контролирующих освобождение фосфоинозитолбис-
фосфата (Р1Р
2
) с помощью фосфолипазы С [Lanier, Gertler,
2000] и зависящую от Р1Р
2
динамику изменения структуры и 
локализации актиновых нитей, которые, в свою очередь, 
определяют морфогенез клеток.
Использование ингибитора полимеризации тубулино-
вых белков оризалина, вызвавшего скопление ретикуло-
плазминовых Са
2+
-
связывающих белков вблизи плазмати-
ческой и ядерной мембран [Олиневич и др., 2001], позволи-
ло авторам сделать вывод об участии цитоскелета и ретику-
лоплазминов в преобразовании внешних сигналов.
Перестройки актиновых нитей очень чувствительны к 
изменениям рН. При высоком содержании протонов акти-
новые нити более стабильны, а микротрубочки менее ста-
бильны, что не может не отразиться на состоянии цитоскеле-
та в целом [Медведев, Маркова, 1998]. Если иметь в виду, 
что одним из наиболее ранних ответов клеток растений на 
действие патогенов и элиситоров является подкисление ци-
тозоля, то становится очевидным, что это не может не по-
влиять на структуру и функции цитоскелета.
Описаны контролируемые цитоскелетом изменения 
морфогенеза клеток, вызванные не только фитогормона-
ми, но и светом, изменением направления силы тяжести и 
другими причинами. Для нас особый интерес представляют 
факты действия на функционирование цитоскелета инфи-
цирования растений патогенами, приведенные в обзорной 
работе [Nick, 1999]. Показано, что ядро клетки растения-хо-
зяина начинает двигаться к месту контакта с клеткой гриба 
[Gross et al., 
1993]. Движение ядра осуществляется с помо-
щью актиновых микрофиламентов и обусловлено также 
локальной деполимеризацией кортикальных микротрубо-
чек вокруг места контакта с грибом. Можно вызвать тор-
можение движения ядра с помощью специальных препара-
тов, причем в этом случае грибы, которые не были способ-
ны инфицировать растение, становились патогенными 
[Kobayashi et al., 1997]. 
Авторы связывают это с ослаблени-
ем отложения каллозы на внешней поверхности плазма-
леммы, в месте контакта с патогеном.
Исследование особенностей действия элиситоров крип-
тогеина и олигогалактуронидов на цитоскелет клеток таба-
ка показало [Binet et al., 2001], что первый вызывал быстрое 
и сильное разрушение сети микротрубочек, в то время как 
вторые не оказывали влияния на нее. Действие криптогеи-


на положительно коррелировало с поглощением клетками 
ионов кальция. В то же время имеется информация о регу-
ляции функционирования кальциевых каналов цитоскеле-
том [Thuleau et al., 1998].
Непатогенный мутант патогенного для риса гриба 
Magnaporthe grisea 
вызывал целый ряд защитных метаболи-
ческих реакций и перестройку актинового цитоскелета [Хи 
et al., 1998].
Б
ОЛЬШОЙ 
интерес вызывает информация о том, что глю-
кановые фрагменты из клеточных стенок фитофторы вы-
зывали снижение содержания мРНК одной из двух обнару-
женных изоформ тубулина, причем это было вызвано не 
подавлением экспрессии гена тубулина, а деградацией тубу-
линовой мРНК, опосредованной глюканиндуцированным 
повышением содержания ионов кальция в цитозоле [Ebel et 
al., 2001].
Вызванная липохитоолигосахаридами (Nod-факторами) 
быстрая деполимеризация актина считается главной причи-
ной успешного проникновения бактерий Rhizobium в кор-
невые волоски с последующим образованием клубеньков у 
бобовых растений [Cardenas et al., 1998; Ruijter et al., 1998]. 
Обнаружено, что при бактериальной атаке растений одним 
из наиболее быстро индуцируемых белков является цент-
рин цитоскелета [Cordeiro et al., 1998].
Итак, есть все основания считать, что цитоскелет связан 
с сигнальной сетью и его изменения являются частью за-
щитного механизма против патогенных грибов и бактерий. 
С другой стороны, вирусы могут использовать микротру-
бочки цитоскелета для передвижения от клетки к клетке 
через плазмодесмы [Heinlein et al., 1995], и в этом случае ци-
тоскелет скорее способствует инфицированию растений, а 
не их защите.


Достарыңызбен бөлісу:
1   ...   23   24   25   26   27   28   29   30   ...   49




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет