белки, протеинкиназы, протеинфосфатазы, фосфоинози-
тидфосфатазы.
Показано, что актин-деполимеризующий фактор изме-
няет активность под влиянием фосфорилирования с помо-
щью Са
2+
-
зависимых протеинкиназ. У
арабидопсиса был
выделен кальмодулинсвязывающий моторный вспомога-
тельный белок кинезин, причем Са
2+
-
кальмодулиновый
комплекс этого белка с кинезином ингибировал способ-
ность микротрубочек участвовать в процессах внутрикле-
точного движения. Фосфорилирование а- и |3-тубулинов ак-
тивировалось Са
2+
-
кальмодулинзависимыми и цАМФ-зави-
симыми протеинкиназами, а также протеинкиназой С
[Blume et al., 1997].
Абсцизовая кислота вызывала быструю деполимериза-
цию кортикальных актиновых нитей в замыкающих клет-
ках устьиц, причем этот процесс был опосредован входом в
клетки ионов кальция [Hwang, Lee, 2001]. Деполимеризация
медиировалась также протеинкиназами (о чем свидетельст-
вовало ее подавление стауроспорином).
Особое внимание привлекает установление факта уди-
вительного сходства трехмерной структуры цитоскелетных
вспомогательных моторных белков с G-белками. Так как
G-
белки могут непосредственно взаимодействовать с цито-
плазматическим доменом многих рецепторов в сигнальных
системах (и изменять при этом свою конформацию и актив-
ность), то этот факт позволяет допускать возможность
очень тесной связи даже между начальными звеньями сиг-
нальных систем и цитоскелетом.
Димеры тубулина имеют особенно высокое сродство с
ос-субъединицами G-белков [Крутецкая, Лонской, 1994].
Обнаружено, что активатор G-белков мастопаран вызыва-
ет (предположительно, при участии фосфоинозитольной
сигнальной системы) переход вспомогательного белка про-
филина (взаимодействующего с мономерной формой акти-
на [McCurdy et al., 2001]) из ядра в цитоплазму у клеток кор-
ней кукурузы и связанное с этим изменение структуры ак-
тиновых микрофиламентов [Baluska et al., 2001].
Выделен класс белков - пипмодулинов (связывающихся
с фосфоинозитидными фосфолипидами клеточной мембра-
ны), контролирующих освобождение фосфоинозитолбис-
фосфата (Р1Р
2
) с помощью фосфолипазы С [Lanier, Gertler,
2000] и зависящую от Р1Р
2
динамику изменения структуры и
локализации актиновых нитей, которые, в свою очередь,
определяют морфогенез клеток.
Использование ингибитора полимеризации тубулино-
вых белков оризалина, вызвавшего скопление ретикуло-
плазминовых Са
2+
-
связывающих белков вблизи плазмати-
ческой и ядерной мембран [Олиневич и др., 2001], позволи-
ло авторам сделать вывод об участии цитоскелета и ретику-
лоплазминов в преобразовании внешних сигналов.
Перестройки актиновых нитей очень чувствительны к
изменениям рН. При высоком содержании протонов акти-
новые нити более стабильны, а микротрубочки менее ста-
бильны, что не может не отразиться на состоянии цитоскеле-
та в целом [Медведев, Маркова, 1998]. Если иметь в виду,
что одним из наиболее ранних ответов клеток растений на
действие патогенов и элиситоров является подкисление ци-
тозоля, то становится очевидным, что это не может не по-
влиять на структуру и
функции цитоскелета.
Описаны контролируемые цитоскелетом изменения
морфогенеза клеток, вызванные не только фитогормона-
ми, но и светом, изменением направления силы тяжести и
другими причинами. Для нас особый интерес представляют
факты действия на функционирование цитоскелета инфи-
цирования растений патогенами, приведенные в обзорной
работе [Nick, 1999]. Показано, что ядро клетки растения-хо-
зяина начинает двигаться к месту контакта с клеткой гриба
[Gross et al.,
1993]. Движение ядра осуществляется с помо-
щью актиновых микрофиламентов и обусловлено также
локальной деполимеризацией кортикальных микротрубо-
чек вокруг места контакта с грибом. Можно вызвать тор-
можение движения ядра с
помощью специальных препара-
тов, причем в этом случае грибы, которые не были способ-
ны инфицировать растение, становились патогенными
[Kobayashi et al., 1997].
Авторы связывают это с ослаблени-
ем отложения каллозы на внешней поверхности плазма-
леммы, в месте контакта с патогеном.
Исследование особенностей действия элиситоров крип-
тогеина и олигогалактуронидов на цитоскелет клеток таба-
ка показало [Binet et al., 2001], что первый вызывал быстрое
и сильное разрушение сети микротрубочек, в то время как
вторые не оказывали влияния на нее. Действие криптогеи-
на положительно коррелировало с поглощением клетками
ионов кальция. В то же время имеется информация о регу-
ляции функционирования кальциевых каналов цитоскеле-
том [Thuleau et al., 1998].
Непатогенный мутант патогенного для риса гриба
Magnaporthe grisea
вызывал целый ряд защитных метаболи-
ческих реакций и перестройку актинового цитоскелета [Хи
et al., 1998].
Б
ОЛЬШОЙ
интерес вызывает информация о том, что глю-
кановые фрагменты из
клеточных стенок фитофторы вы-
зывали снижение содержания мРНК одной из двух обнару-
женных изоформ тубулина, причем это было вызвано не
подавлением экспрессии гена тубулина, а деградацией тубу-
линовой мРНК, опосредованной глюканиндуцированным
повышением содержания ионов кальция в цитозоле [Ebel et
al., 2001].
Вызванная липохитоолигосахаридами (Nod-факторами)
быстрая деполимеризация актина считается главной причи-
ной успешного проникновения бактерий Rhizobium в кор-
невые волоски с последующим образованием клубеньков у
бобовых растений [Cardenas et al., 1998; Ruijter et al., 1998].
Обнаружено, что при бактериальной атаке растений одним
из наиболее быстро индуцируемых белков является цент-
рин цитоскелета [Cordeiro et al., 1998].
Итак, есть все основания считать, что цитоскелет связан
с
сигнальной сетью и его изменения являются частью за-
щитного механизма против патогенных грибов и бактерий.
С другой стороны, вирусы могут использовать микротру-
бочки цитоскелета для передвижения от клетки к клетке
через плазмодесмы [Heinlein et al., 1995], и в этом случае ци-
тоскелет скорее способствует инфицированию растений, а
не их защите.
Достарыңызбен бөлісу: