4.3. Старейшее доказательство
(содержится в одном из произведений Бхаскары).
Пусть АВСD квадрат, сторона которого равна гипотенузе прямоугольного треугольника АВЕ (АВ = с, ВЕ = а,
АЕ = b);
Пусть СКВЕ = а, DLCK, AMDL
ΔABE = ∆BCK = ∆CDL = ∆AMD,
значит KL = LM = ME = EK = a-b.
.
4.4. Доказательство простейшее
|
Это доказательство получается в простейшем случае равнобедренного прямоугольного треугольника.
Вероятно, с него и начиналась теорема.
В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы.
Например, для треугольника АВС: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по два. Теорема доказана.
|
Достарыңызбен бөлісу: |