4. Шесть способов доказательства теоремы Пифагора
4.1. Древнекитайское доказательство
На древнекитайском чертеже четыре равных прямоугольных треугольника с катетами a, b и гипотенузой с уложены так, что их внешний контур образует квадрат со стороной a+b, а внутренний – квадрат со стороной с, построенный на гипотенузе
a2 + 2ab +b2 = c2 + 2ab
a2 +b2 = c2
4.2. Доказательство Дж. Гардфилда (1882 г.)
Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого.
Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту
S =
C другой стороны, площадь трапеции равна сумме площадей полученных треугольников:
S =
Приравнивая данные выражения, получаем:
или с2 = a2 + b2
Достарыңызбен бөлісу: |