Логикалыќ пікірлердіњ негізгі тџсініктері


КОМПЬЮТЕРДІҢ ЛОГИКАЛЫҚ НЕГІЗДЕРІ



бет4/6
Дата11.01.2022
өлшемі78 Kb.
#23935
түріҚұрамы
1   2   3   4   5   6
Байланысты:
ref -kompjuterdin-logikalyq-negizderi

2. КОМПЬЮТЕРДІҢ ЛОГИКАЛЫҚ НЕГІЗДЕРІ

2.1. Логикалық пікірлердің негізгі түсініктері

ЭЕМ қатысуымен шешілетін есептердің ішінде, әдетте логикалық деп аталатын есептер де аз емес.

Логика бұл адам ойлауының түрлері мен заңдары туралы, оның ішінде дәлелдеуге болатын пікірлердің заңдылықтары туралы ғылым.

Ғылыми пән ретінде логиканың бірнеше нүсқалары дараланады:

Формальды логика;

Математикалық логика;

Ықтималды логика;

Диалектикалық логика және т.б.

Адам әртүрлі кесте құрғанда, бір бірне қайшы келетін куәлар жауаптарының дұрысын анықтағанда және басқа көптеген жағдайларда логиканың көмегіне жүгінеді.

Формальды логика сөйлеу тілімен білдіретін біздің кәдімгі мазмұнды пікірімізді талдаумен байланысты.

Математикалық логика формальды логиканың бөлігі болып табылады және оның дәлме дәл анықталған обьектілері мен пікірлері бар, олардың ақиқаттығын немесе жалғандығын бір мәнді шешуге болатын ойларды ғана зерттейді.

Математикалық логиканың саласы пікірлер алгебрасы ретінде информатикада жақсы меңгерілген.

Логика алгебрасының математикалық аппараты компьютердің аппараттық құралдарының жұмысын сипаттауға өте қолайлы, өйткені компьютердегі негізгі екілік санау жүйесі болып табылады, онда екі цифр: 0 мен 1 қолданылады, ал логикалық айнымалылардың мәндері де: 0 және 1. Бұл компьютердің бір ғана құрылғылары екілік санау жүйесінде ұсынылған сандық ақпаратты да, логикалық айнымалыларды да өңдеу және сақтау үшін қолданыла алады. Демек, компьютерді конструкциялағанда, оның логикалық функциялары схемаларының жүмысы айтарлықтай жеңілденеді және қарапайым логикалық элементтердің саны азаяды. Компьютердің негізгі тораптары ондаған мың осындай логикалық элементтерден тұрады.

Қазіргі кезде пікірлер алгебрасының негізгі операциялары енбейтің бірде бір программалау тілі жоқ. Логикалық есептерде тек сандар ғана емес, күтпеген, тым шиеленісті пікірлер де бастапқы деректер болып табылады.

Мысал: Өзеннің жағасында тұрған қайығы бар шаруаның қасқыры, ешкісі, орамжапырағы бар. Шаруа өзеннің екінші жағалауына қасқырды, ешкіні және орамжапырақты өткізуі керек. Қайыққы шаруаның өзінен басқа, тек қасқыр, не ешкі, не орамжапырақ қана сияды. Қасқырды ешкімен немесе ешкіні орамжапырақпен қараусыз қалдыруға болмайды, өйткені қасқыр ешкіні, ал ешкі орамжапырақты жеп қоюы мүмкін. Мұндай жағдайда шаруа не істеу керек? Бұл есепте арифметика емес, пайымдау үстемдік етеді.


  1. Егер қасқырды алып кетсе, онда ешкі орамжапырақты жеп қояды.

  2. Егер орамжапырақты алып кетсе, онда қасқыр ешкіні жеп қояды.

  3. Ендеше, ең алдымен ешкіні алып өту керек, өйткені қасқыр орамжапырақ жемейді.

Бұл есепті компьютерде шешкенде бағдарламада шарт қолданылатын логикалық операцияларды пайдалану керек.

Адамдар ақпарат алмасқандағы қатынас түрлерінің бірі бұл сұрақтар мен жауаптарды кезектестіру. Әрбір сұрақ бізді қоршаған зат әлемі туралы мағлұматтарды білу қажеттігін білдіреді. Бұл білімді біз пайымдау түрінде айтамыз. Пайымдау, әдетте тікелей бақыланатын фактілерді көрсете алады. Алайда пайымдауларда ойдан шығарылған обьектілер немесе әлі болып үлгермеген оқиғалар туралы тұжырымдар да айтылуы мүмкін.

Пікір дегеніміз жалған немесе ақиқат болуы мүмкін қандай да бір пайымдау.

Әдетте біз бақылайтын фактілер ақиқат ретінде қабылданады. Жалған пайымдаулар, көбінесе, пайымдаулар мен ұйғарымдардағы қателерден немесе сондай болса екен деген тілегімізді шындық ретінде көрсетуге тырысудан пайда болады.

Пікірлер жалпы және жеке болып бөлінеді. Жеке пікір нақты фактілерді көрсетеді, мысалы, 3+3<7.

Жалпы пікірлер обьектілер немесе құбылыстар тобының қасиеттерін сипаттайды, мысалы, «Егер жаңбыр жауған болса, онда көше су болып жатыр». Жалпы пікір обьектілердің қандай да бір бөлігі үшін ақиқат, ал басқа обьектілер үшін жалған болуы мүмкін. Мысалы, «Иттер мысықтарды жақсы көрмейді» пікірі иттердің көпшілігі рас, барлығы үшін емес. Егер айтылған ой обьектілерінің кез келгені үшін рас болса, онда жалпы пікір тепе тең ақиқат деп аталады. Мысалы, «Иттің төрт аяғы бар» пікірі кез келген ти үшін рас.

Тепе тең ақиқат пікірлер заттардың заңды байланыстарын көрсеткенде ерекше пайдалы. Логикалық жалғаулықтардың көмегімен басқа пікірлерден құрастырылған пікірлерді құрамды деп атайды. Құрамды емес пікірлерді қарапайым немесе элементар деп атайды.

Құрамды пікірдегі немесе жалғаулығы екі жақты рөл атқаруы мүмкін. Мысалы, «Біз бүгін саябаққа демалуға барамыз немесе бақшада жұмыс істейміз», өйткені бір мезгілде саябақта демалу мен бақшада жұмыс істеу мүмкін емес. Ал «Жаңбыр күндіз немесе кешке жауады» деген сөйлемде үш түрлі жағдай болуы мүмкін: «Жаңбыр күндіз жауады», не «Жаңбыр күндіз де кешке де жауады» не «Жаңбыр кешке жауады». Бірінші мысалда НЕМЕСЕ жалғаулығы бөлуші рөл, екіншісінде біріктіруші рөл атқарады.

Барлық компьютерлік бағдарламада және математикалық пайымдауларда НЕМЕСЕ жалғаулығы тек біріктіруші рөлде түсініледі.

Математикада НЕМЕСЕ жалғаулығы бар құрамды пікірді құрайтындардың кемінде біреуі ақиқат болса, ол ақиқат деп есептеледі, ал егер оны құрайтындардың бәрі жалған болса, ол жалған деп есептеледі.

ЕМЕС Жалғаулығы теріске шығаруды тұжырымдау үшін қолданылады. Егер бастапқы пайымдау жалған болса, онда терістеу ақиқат және керісінше, егер бастапқы пайымдау ақиқат болса, онда терістеу жалған.



Достарыңызбен бөлісу:
1   2   3   4   5   6




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет