а —мультимодальные и унимодальные нейроны; б —неспецифические и специфические нейроны; в— угасающие и стабильные нейроны
Все это показывает, что в реализации активных форм психической деятельности, требующих не только получения информации, но и сличения этой информации с предшествующим опытом, принимают участие различные, в том числе далеко отстоящие друг от друга, зоны коры головного мозга и что психические процессы осуществляются сложными системами совместно работающих зон мозговой коры и нижележащих нервных образований.
Значение этого факта для понимания основных принципов функциональной организации мозга как органа психической жизни будет показано далее.
3 ФИЗИОЛОГИЧЕСКИЕ ДАННЫЕ: МЕТОД РАЗРУШЕНИЯ
Мы коротко остановились на двух источниках наших знаний о функциональной организации мозга: сравнительно-анатомических исследованиях и методах раздражения различных участков мозга непосредственным и косвенным путем.
Нам осталось ознакомиться с основными данными, полученными третьим путем, — методом выключения (или разрушения), который заключается в том, что исследователи разрушают определенные области мозга животного и прослеживают изменения в его поведении. Этому методу (или, более точно, наблюдениям над больными, у которых ранение, кровоизлияние или опухоль разрушили определенные участки мозга) суждено было сыграть основную роль в становлении новой науки о функциях мозга — нейропсихологии.
60
Еще на первых этапах физиологического анализа функции мозга было показано, что разрушение различных его участков приводит к далеко не одинаковым результатам.
Так, уже в середине XIX века было твердо установлено, что разрушение той области мозга собаки, которая содержит гигантские пирамидные клетки и, следовательно, соответствует передней центральной извилине человеческого мозга, вызывает паралич противоположных конечностей, в то время как разрушение других участков мозга (этого же полушария) не приводит к такому эффекту. Аналогичные данные были получены в опытах с высшими млекопитающими — обезьянами. Правда, эти опыты с первых же шагов выявили определенные трудности, источники которых стали понятными лишь значительно позже.
Еще в первой половине XIX века Флуранс (1842) показал, что точное ограничение двигательных функций определенными зонами мозговой коры весьма относительно: перешивая накрест нервы, идущие у петуха от определенных зон мозга к крыльям, он не наблюдал никаких изменений в двигательных функциях последних. Через некоторое время Гольц (1876—1881), разрушивший двигательные участки мозговой коры собаки, пришел к выводу, что моторные функции не ограничены у нее строго определенными участками мозга, что нарушенные функции конечностей быстро восстанавливаются после таких операций и что разрушение различных участков мозга приводит скорее к общему снижению активности поведения животного, чем к выпадению специальных, изолированных функций. Представления об отсутствии четкой функциональной организации мозговой коры у животных, существенно противоречащие всем тем фактам, которые мы приводили ранее, длительное время сохранялись в науке. Выдающийся американский исследователь К. С.Лешли (1929) описал факты, которые заставляли думать, что у крысы функции поведения связаны скорее с массой сохранившегося мозга, чем с локализацией разрушенного в опыте мозгового вещества.
Объяснить это противоречие оказалось возможным много позже, когда больше стало известно о тонком строении мозговой коры различных животных и когда были проведены сравнительные исследования, показавшие, к каким различным результатам приводит разрушение одной и той же мозговой ткани у представителей различных этапов развития животного мира.
Как уже говорилось ранее (см. рис. 9), строение мозга животных, относящихся к различным этапам эволюции, отличается различной степенью дифференцированности. Если у ежа, крота или мыши еще трудно выделить четкие, различные по своему строению, поля, сенсорные зоны коры у них еще недостаточно дифференцированы от двигательных зон, а вторичные и третичные поля почти вовсе не выделены, то на высших этапах эволюционной лестницы (например, у приматов) такая дифференцированность полей оказывается достаточно высокой; у человека она достигает высочайших пределов, причем вторичные и третичные поля доминируют во всей массе коры.
61
Уже это может служить объяснением того факта, что разрушение ограниченных зон головного мозга вызывает на различных ступенях эволюционной лестницы неодинаковый эффект и что повреждение отдельных участков мозга вызывает у низших млекопитающих (не говоря уже о низших позвоночных) менее дифференцированные дефекты, чем у высших млекопитающих и приматов (табл. 7).