Математиканы оқыту әдістемесі математика ғылымымен тығыз байланысты. Математика – орта мектептегі негізгі пәндердің бірі болып табылады. Ол басқа пәндерді оқып үйренуге, оқушылардың логикалық ой-өрісінің дамуына септігін тигізеді. Математика әдістемесінің мазмұны мен даму барысын дұрыс бағдарлап түсіну үшін математика ғылымының даму тарихынан мағлұматтарды білу қажет. Математиканы оқыту әдістемесі математиканың көп ғасырлы дамуымен тығыз байланысты. Жалпы математика ғылымының даму тарихын төрт кезеңге бөледі: 1. Математиканың пайда болу кезеңі. Бұл кезең көне дәуірден біздің дәуірімізге дейінгі VI-V ғасырларға дейін созылған. Бұл кезеңде математиканың алғашқы негізгі ұғымдары: сандар, фигуралар, т.б. қалыптасты; математиканың тәжірибелік есептерді шығаруға қажетті бастамасы шықты. 2. Элементар математика кезеңі. Біздің дәуірімізге дейінгі VI-V ғасырлардан бастап, біздің дәуіріміздің XVII ғасырына дейін болған аралықта тұрақты шамалар зерттеліп, ашылады. Математика ғылымы өзіндік зерттеу тақырыбы және зерттеу әдісі бар пән ретінде танылды. 3. Айнымалы шамалар математикасының даму кезеңі. XVII ғасырдан бастап XIX ғасырдың орта тұсына дейін созылған. Аналитикалық геометрияға айнымалы шамаларды Р. Декарттың (1596-1650) енгізуімен және И. Ньютон (1642-1727) мен Г. Лейбниц (1646-1716) жасаған дифференциалдық және интегралдық есептерден басталады. 4. Қазіргі математика кезеңі. Бұл кезең XIX ғасырдың ортасынан басталып қазіргі математика кезеңі. Мұнда математика пәні мен қолданылу ауқымы кеңейіп, көптеген математикалық жаңа теориялар пайда болады және аксиоматикалық әдістерінің даму салдарынан жаңа фундаменталды ұғым математикалық құрылым ұғымы пайда болды. Қазіргі заман математикасы ондаған әр түрлі салалардан тұрады, олардың өзіне тән мазмұны, әдіс-тәсілдері бар. Қазіргі ғылым мен техниканың дамуына байланысты математика ғылымы тереңдеп, күрделеніп, зерттеу объектілері кеңейе түсті, сөйтіп адамзат ақылымен құрылған 5 анағұрлым жоғарғы абстракцияларды қамтиды. Сонымен қатар теориялық математикамен бірге қолданбалы математика тез қарқынды дамуда. Экологиялық процестерді басқару теориялары күннен-күнге математикалық сипат алып отырғаны, қуатты электрондық есептеуіш техникаларының пайда болуы, олардың әлеуметтік, экономикалық салаларда кең көлемді қолданылуы математиканың басқа ғылымдар секілді жоғары қарқынмен дамуда екенін көрсетеді. Сонымен бірге математика заттардың қасиеттерін және геометриялық фигураларды зерттейді. Зерттеу кезінде математикалық ұғымдар одан әрі баяндандырылып, берілген мәлімет ретінде қарастырылады. Математикада пайда болатын абстракциялар нақтылы заттардың қасиеттерін жалпылайтын абстракциялардан топологиялық кеңістік, алгоритмдер, жалпы алгебралық жүйелер және т.б. сияқты неғұрлым жоғары деңгейдегі абстракцияларға қарай сатылап дамиды. Математика қазіргі кезде ғылым саласында ерекше орын алады. А.Н. Колмогоров: «Математиканы білмей, осы күнгі техниканың негіздерін де, ғалымдардың, табиғи және әлеуметтік құбылыстарды қалай зерттейтіндігін де түсінуге болмайды» деген болатын. Математика материалды дүниенің мазмұнынан бөлініп алынған кеңістік формалары мен сандық қатынастарын зерттейді және математика әдіснамасы математикада қолданылатын таным әдістерінің барлық жиынтығын зерттейді. Бұл жиынтықты таразылау үшін математиканы тарихи даму, өркендеу тұрғысынан қарастыру қажет және математика ғылымының ішкі байланыстарымен бірге, оның басқа ғылымдармен адамзат қызметінің әр алуан қырларымен байланыстырып зерттеу керек. Математика әдіснамасы шындықты танып-білу және түрлендіру әдістері жайындағы философиялық ілім ретінде, дүниетану қағидаларын таным үрдістеріне және тәжірибеге қолдану, математикалық абстракциялардың мәні т.с.с. жөніндегі мәселелерге назар аударады