Уравнения высших степеней с целыми коэффициентами.
Любое уравнение вида можно свести к приведенному уравнению той же степени домножив обе его части на и выполнив замену переменной вида :
Полученные коэффициенты тоже будут целыми.
Таким образом, будем решать приведенное уравнение степени n с целыми коэффициентами вида .
Алгоритм решения.
Находим целые корни уравнения.
Целые корни уравнения , i=1, 2, …, m (m – количество целых корней уравнения) находятся среди делителей свободного члена . То есть, первым делом выписываем делители свободного члена и подставляем их по очереди в исходное равенство для проверки. Перебираем их по очереди, пока не получим тождество. Как только тождество получено, то первый целый корень уравнения найден и уравнение предстает в виде , где - корень уравнения, а - частное от деления на .
Продолжаем подставлять выписанные ранее делители в уравнение , начиная с (так как корни могут повторяться). Как только получаем тождество, то корень найден и уравнение предстает в виде , где - частное от деления на .
И так продолжаем перебор делителей, начиная с . В итоге найдем все m целых корней уравнения и оно представится в виде , где - многочлен степени n-m. Весь этот процесс удобно проводить по схеме Горнера.
Дробных корней приведенное уравнение с целыми коэффициентами иметь не может.
Находим оставшиеся корни (иррациональные и/или комплексные) из уравнения любым способом.
Разберем алгоритм на примере.
Пример.
Решить уравнение .
Решение.
Во-первых, найдем все целые корни данного уравнения.
Свободным членом является -3. Его делителями являются числа 1, -1, 3 и -3.
Будем подставлять их по очереди в исходное равенство до получения тождества.
При х=1 имеем . То есть х=1 является корнем уравнения.
Разделим многочлен на (х-1) столбиком:
Следовательно, .
Продолжим перебор делителей, но уже для равенства :
При х = -1 получили верное равенство, следовательно, -1 является корнем уравнения.
Достарыңызбен бөлісу: |