Если числа x1, x2,…,xn – корни многочлена n-ой степени
a(x)= an*xn + an-1*xn-1 + an-2*xn-2 + ... + a1*x + a0, an ≠0, то справедливы равенства:
Эти равенства называются формулами Виета.
Выпишем их отдельно для многочленов второго, третьего и четвертого порядков.
Формулы Виета для квадратного многочлена
Для квадратного многочлена ax2 + bx + c
Формулы Виета для квадратного многочлена позволяют подбирать его целочисленные корни (если они существуют), не решая квадратного уравнения.
Калькуляторы для решение примеров и задач по математике
Лучшие математические приложения для школьников и их родителей, студентов и учителей. Подробнее ...
Пример 1. Разложить на множители квадратный трехчлен x2 - 2012x + 2011.
Решение.
Легко видеть, что x = 1 является корнем трехчлена. Убеждаемся в этом простой подстановкой. По формуле Виета
x1x2 =
ca
= 2011 <=> 1*x2 = 2011 <=> x2 = 2011. Следовательно, x2 - 2012x + 2011 = (x - 1)(x - 2011).
Ответ: x2 - 2012x + 2011 = (x - 1)(x - 2011).
Пример 2. Разложить на множители квадратный трехчлен 2012x2 + 2011x - 1.
Решение.
Простой подстановкой легко проверяется, что x = -1 является корнем квадратного трехчлена. По формуле Виета
x1x2 =
ca
=
-12012
<=> -1*x2 =
-12012
<=> x2 =
12012
.
Следовательно, 2012x2 + 2011x - 1= 2012(x + 1)(x -
12012
) = (x+1)(2012x-1).
Ответ: 2012x2 + 2011x - 1= 2012(x + 1)(x -
12012
) = (x+1)(2012x-1).
Таким образом, очень часто формулы Виета позволяют быстро подобрать целые корни квадратного трехчлена, не проводя громоздких вычислений. Кроме того, по коэффициентам трехчлена можно сделать выводы о знаках корней уравнения. Например, если корни трехчлена существуют, и
ca
> 0, то или оба корня положительны, или оба отрицательны.
Пример 3. Определить знаки корней уравнения 5x2 - 33x + 10 = 0, не решая его.
Решение.
Дискриминант уравнения D = b2 - 4ac = 332 - 4*5*10 > 0, следовательно, уравнение имеет два действительных корня. По формулам Виета
То есть x1x2 > 0, значит оба корня имеют одинаковый знак. Но сумма корней > 0, следовательно, оба корня положительные числа.
Ответ: Уравнение имеет два положительных корня.
Кроме того, формулы Виета позволяют быстро проверить, является ли заданный набор чисел корнями многочлена. В общем, формулы Виета – это очень полезный инструмент в решении самых разных задач с многочленами. Эти формулы для квадратного трехчлена даже изложены в стихах неизвестным автором:
По праву достойна в стихах быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи постоянства такого:
Умножишь ты корни - и дробь уж готова:
В числителе c, в знаменателе a,
А сумма корней тоже дроби равна
Хоть с минусом дробь эта, что за беда
В числителе b, в знаменателе a.
Выпишем формулы Виета для многочлена третьего и четвертого порядков.
Формулы Виета для многочлена третьего порядка
Если a(x) = a3*x3 + a2*x2 + a1*x + a0, то
Формулы Виета для многочлена четвертого порядка
Если a(x) = a4*x4 + a3*x3 + a2*x2 + a1*x + a0, то
Достарыңызбен бөлісу: |