Дәрежесіне кері пропорционал
мұндағы а — полюстену қабілеті l0 — иондану потенциалымен байланысты шама.
Дисперстік әрекет полюсті не полюссіз, біркелкі немесе әр түрлі, тіпті кез келген молекулалар арасында да кездесетш құбылыс. Олай болса, әрекеттің бұл түрі әлсіз ғана полюстену қабілеті бар полюссіз молекулалардан тұратын заттардағы молекулааралық әрекеттесуді көрсететін бірден-бір негізгі ұғым.
Молекулалар өзара жақындағанда ара қашықтығы олардың радиусынан кіші болса, тебілу күші пайда болады. Ал молекулалардағы өзара тартылу және тебілу күштерін бір ұғымға біріктіріп, молекулааралық немесе Ван-дер-Ваальстік әрекет деп атайды.
II т а р а у
ХИМИЯЛЫҚ ТЕРМОДИНАМИКАНЫҢ НЕГІЗІ
§ 4. ТЕРМОДИНАМИКАНЫҢ БІРІНШІ ЗАҢЫ
Термодинамикалық түсініктер мен анықтамалар. Термодинамика денелер энергиясыньщ бір-біріне жылу мен жұмыс түрінде өзгеруін, айналуын зерттейді. Қоршаған ортадағы энергияның осылай алмасуы термодинамикада сандық сипаттама ретінде қарастырылады. Жылу, электрон, атом, молекула сияқты бөлшектердің ретсіз қозғалысын, яғни олардың кинетикалық энергиясының жылу түріндегі энергиямен алмасуын, ал жұмыс — сол бөлшектердің реттелген қозғалысын кинетикалық энергия түрінде сипаттайды.
Термодинамика негізінен термодинамиканың бірінші және екінші заңдары деп аталатын екі заңдылыққа сүйенеді. Олардың екеуі де өмірдегі, өндірістегі тәжірибелерді жинақтап, қорытып, тұжырымдаудан пайда болған. Термодинамика мынадай тараулардан тұрады: энергияның бір түрден екіншіге түрленуіндегі жалпы заңдылықты зерттейтін жалпы немесе физикалық термоди-намика, жылу машиналарындағы жылу мен механикалық жұмыстың өзара айналуын, яғни жылудын, жұмысқа, жұмыстьщ жылуға ауысуын қарастыратын техникалық термодинамика, химиялық ре-акция, еру, кристалдану, адсорбция сияқты процестердегі энергия түрлерінің өзара алмасуын, айналуын анықтап, есептейтін химиялық термодинамика. Сол сияқты, химиялық термодинамика тек химиялық және басқа да энергиялардағы ара қатынасты зерттеп қана қоймай, белгілі жағдайдағы химиялық процестердің мүмкіндігі мен өздігінен жүру шегін айқындайды. Ендеше, химиялық термодинамика химиялық өндіріс пен технологиялык процестер негізі болып саналатын физикалық-химиялық құбылыстарды нақты түсініп, сауатты есептеп, ұтымды басқаруға көмектеседі.
Термодинамикалық әдістегі есептеулерді қолдану өндірістің барлық салаларына өз ықпалын тигізіп, оларды жаңа сатыға кө-терді. Ал, қазіргі кезде термодинамикалық әдіс металлургиялық процестерде, пластикалық масса (пластмасса), тыңайтқыш, химиялық талшық өндірісінде, отынды химиялық әдіспен өңдеуде кеңінен қолданылуда. Әсіресе, соңғы жылдары биологиялық тер-модинамиканың шапшаң дамуына байланысты, өсімдік пен жану-ар организмдеріндегі биохимиялық процестерге де термодинами-калық есептеу әдістері қолданылуда.
Термодинамиканын алғашқы бағыты табиғатта кездесетін қүбылыстарды жай ғана баяндаудан басталып, жылу мен энергия түрлері арасындағы қатынасты сипаттап қана қоймай, оны есептеуді игерді. Термодинамика математика, физика, химия сияқты түбегейлі ғылым салаларымен тығыз байланыста бірін-бірі толықтыра келіп, ішкі энергияның айналуын анықтап, бағытын, мүмкіндігін көрсетеді. Ал, соңғы жетістіктерге сүйеніп, термодинамика көптеген процестерді есептеп, анықтап, ондағы энергияньщ қалай-
18
ша түрленетінін нұсқап қоймастан, жалпы процестің жүру, жүрмеуін алдын ала болжайды.
Термодинамика сондай-ақ, классикалық және статистикалық болып та бөлінеді. Классикалық (дәстүрлі) термодинамика жеке-ленген атом, молекула сияқты бөлшектерді емес, бу машиналарының, іштен жанатын двигательдердің жүмыс істеу ерекшеліктерін, сұйықты қайнатып айдау, кристалдану, электролиз сияқты микроскопиялық жүйелерді зерттейді. Ал статистикалық термодинамика кейін пайда болса да, термодинамика ілімін едәуір дамытып, жаңа сатыға көтерді. Статистикалық термодинамика жекеленген атом, молекула секілді бөлшектерді қарастырады, олардын, біріккен сипаты мен қасиеттерін айқындайды. Термодинамиканың бүл екі саласын білу болашақ химик, биолог, технологтардың кәсіби ма-мандықтарының деңгейін жаңа сапаға көтереді.
Термодинамиканы кейде энергетика деп те атайды. Ол зерттеуші колындағы аса қуатты кару, таптырмас әдіс болса да, бәрін шеше бермейді. Оның көмегімен белгілі процесс кезінде алынатын барынша тиімді, мейлінше пайдалы жұмысты болжап айтуға, тепе-тендік күйді анықтауға, жоғары шығымды, жүріп жатқан реакция үшш тиімді температураны, қысымды, еріткіш ортаны, т. с. с. білуге болады. Сондай-ақ, термодинамика берілген реакцияның жүру, жүрмеуін, бағытын анықтайды. Бірақ осы реакция жүру үшін қанша уақыт қажет, ол қандай жолмен жүреді деген сауалдарға жауап бере алмайды.
Термодинамикалық система (көбіне тек система) дсп қоршағак ортадан бөлініп алынган денені немесе денелер тобын айтады. Ал системадан тыс қалғандарды қоршаған орта дейді. Системаның фазааралық не ойша бөлшген шекарасы болады. Осылайша бөлініп алынған системадағы молекулалар саны көп болу қажет. Егер системадағы молекула саны аз болса, оны термодинамика карастырмайды.
Системаның өзін қоршаған ортамен қатынасы энергияның ме-ханикалық, жылулық немесе басқа да түрлерімен және затпен алмасқан мезеттерде жүзеге асады. Егер осы айтылғандардьщ бірде-бірі жүзеге асгтаса, онда мүндай системаны оқшауланған система дейді. Ал система мен оны қоршаған орта арасындағы қатынас энергия түрлері арқылы жүзеге асып, онда зат катынаспаса (алмаспаса), системаны жабық, кейде тұйықталған деп атайды. Зат салынған жабық ыдыс, газы бар баллон және баскалар жабық системаларга мысал болады. Системадан шығатын зат та, энергия түрлері де оны қоршаған ортаға жетіп алмасса және бұл қубылыс кері бағытта да жүретін болса, оларды ашық система дейді. Өсімдіктер мен жануарлар дүниесі ашық системаға айқын мысал. Мұндағы система — өсімдік, жануар (тірі организм), оны қоршаған орта — атмосфера (ауа), қатынастырушы зат — қоректік заттар, энергия — химиялық реакциялар кезінде бөлінетін жылу, заттардың тотығуы.
Системаның күйі көлем, қысым, температура, масса, химиялық құрам сияқты параметрлермен және химиялық қасиеттердің жи-
19
ынтығымен сипатталады. Мұнымен қатар система күйін көрсететін бірнеше теңдеулер де бар. Система күйін анықтау үшін көрсетілген өлшемдердің бәрін білу шарт емес, өйткені олар теңдеу құра-мына енгендіктен, бірін-бірі толықтырады және өзара байланысты болады. Система күйін анықтау үшін таңдалып алынған бірнеше тәуелсіз ауыспалы шамадағы қасиет көрсеткішін күй параметрле-рі (өлшемі) дейді. Оларды белгілі бір жағдайда өтетін процеске орай таңдайды. Мәселен, газ күйін сипаттау үшін оның қысымы, көлемі және температурасы сияқты үш өлшемнің екеуін алсақ жеткілікті, себебі қалғаны осыларға әр уақытта да тәуелді болады.
Күй параметрлерін экстенсивтік және интенсивтік деп бөледі. Экстенсивтік параметрлер мысалы, көлем, масса системадағы заттың санына пропорционалды. Ал интенсивтік параметрлер мәселен, температура, қысым, тұтқырлық, концентрация заттың санына (мөлшеріне) тәуелді емес. 1-таблицада энергиянын интенсивтік параметрлермен байланысы көрсетілген. Бұған зер салып қарасақ, энергиянын параметрлермен табиғи байланысын көріп, көптеген коэффициенттерді пайдаланып, энергияның бір түрі басқа түрге қалай ауысатынын және олардың өлшем бірліктерінің де қалай өзгеретінін, ішкі байланысын байқаймыз. Интенсивтік не экстенсивтік параметрлерді интенсивтік фактор және экстенсивтік (сыйымдылық) фактор деп те атайды. Энергияның әр түрлі мәнінде тұрған интенсивтік немесе экстенсивтік параметрлердің орнын ауыстыруға болатыны сияқты, жекеленген параметрлерді (интенсивтік не экстенсивтік (сыйымдылық) фактор болсын) осындағы басқа параметрлермен ауыстыруға болмайды.
Система күйіндегі параметрлердің кез келген өзгерісі процесс деп аталады. Оқулықта жиі кездесетін процестердің кейбір түрлері мыналар:
1. Изотермалық процесс (T = сопst). 2.Изобаралық процесс (р = сопst)
3. Изохоралық процесс (V=сопst)
4. Адиабаталық процесс (Q = 0)
5. Изобара-изотермалық процесс (р = сопst T=сопst )
6. Изохора-изотермалық процесс (V = сопst T=сопst).
20
Система күйінің біраз параметрлері процесс нәтижесінде өзгеріп, соңында өздерінің бастапқы мәнше қайта оралса, онда мұндай процестерді тұйық процестер деп атайды.
Егер системада энергия немесе зат алмасу болмаса және онын, қасиеті уақыт өткен сайын өзгермесе, онда мұндай системаның күйін күй теңдігі дейді. Әйтсе де, ортадан тепкіш күштің, электр-лік және басқа сыртқы әсер ету күштерінің өрісіндегі системаның тепе-теңдік кезіндегі интенсивті қасиеттері бір нүктеден екінші нүктеге ауыса алады, яғни өзгереді, бұл өзгерістерді ескермеуге де болады. Системаның тепе-теңдік күйін уақыт өткен сайын қасиеті өзгеріссіз қалатын тұрақты күйден ажырата білу қажет.
Бір процестегі система тепе-теңдіктегі күйдің біразынан үздіксіз өтсе, оларды тепе-теңдіктегі немесе квази теңдіктегі деп айта-ды. Бұл жағдайда қарастырып отырған система ішіндегі тепе-тең-дікті және оның жекелеген бөліктері арасындағы, сол сияқты сис-теманың өзін қоршаған ортамен шектелген шекарасындағы тепе-теңдікті де қосады. Мұндағы, жекеленген бөліктер мен системаны қоршаған орта арасындағы әрекет процесс сипатына ешбір нұқсан келтірмейді. Егер қоршаған ортадагы процесс те тепе-теңдікте болса, онда қарастырылатын системанын, кез келген аралықтан неме-се соңғы күйден бастапқы қалыпқа (күйге) оралу мүмкіндігі бо-лады және осы кездерде сыртқы ортада ешқандай өзгеріс қалмай-ды. Мұндай процестерді қайтымды дейді. Тепе-теңдіктегі және қайтымды процестер өте баяу жүреді. Тіршіліктегі іске асатын әр процестің соңғы жылдамдығы болады және ондай процестер қай-тымсыз келеді. Тепе-теңдіктегі қайтымды процестерді сипаттайтын қатынастарды термодинамиканың негізгі заңдылықтарына сүйеніп есептеуге болады.
Енді осы процестерді шағын тәжірибе арқылы талдап көрейік: ол үшін тұрақты температурадағы газы бар цилиндрді ешбір ке-дергісіз еркін қозғалатын поршеньмен жабайық. Поршеньге жоғарыдан күш әсер етпесе, ол белгілі бір биіктікте қозғалыссыз тұрады. Бұл процесті түсіндіру үшін 2-суретте көрсетілгендей үш түрлі гирь тастарын алайық. Олардьщ бірінші түрі бір килограм-дық үш гирь тасы, екіншісі — жарты килограмдық алты гирь тасы, ал үшіншісі — ол да үш килограмдық, бірақ ол әрбір түйіршігі бір грамдық қүм қиыршығынан тұрады. Енді цилиндр поршенінің үстіне бір килограмдық бір гирь тасын қойсақ, поршень цилиндр-дегі ауаны қысып, көлемін кішірейтіп, төмендейді, екінші және үшінші гирь тасын койғанда да осы процесс қайталанады. Процесс соңында поршень үш саты арқылы өзінің ең төменгі деңгейіне же-тіп тоқтайды. Осы кезде цилиндрдегі газ көлемі ҮІ-ден (бастапқы көлем) V2-ге өзгереді. Мүны кері жүргізуге де болады. Ол үшін кезекпен әрбір килограмдық гирь тасын бір-бірден алса, поршень үш сатылы процесс арқылы жоғары көтеріліп, өзінің қалпына ке-леді, мұнда газ қысымы азайып, көлемі көбейеді. Осы бір-біріне қарама-қарсы екі процестің өзгеруі 2, а-суретте көрсетілген. Онда-ғы төменгі сынық сызық гирь тастарын поршеньге салғандағы, ал
жоғарғысы оларды біртіндеп алғандағы процестерді аңғартады.
21
Әрбір саты немесе секіру бір килограмдық гирь тасын косқанға (төменгі), не алғанға (жоғарғы) тең. Демек, төменгі сынық сызыктың әрбір секіруі қысымныд (жүктің) көбеюін және соған сәйкес цилиндр ішіндегі газ көлемінің азаюын көрсетсе, жоғарғы сынық сызықтың әрбір секіруі поршеньге түсірілген қысымның (жүктің) кемуі мен соған орай газ көлемінің көбеюін сипаттайды. Осы кездердегі цилиндр поршенінің жоғары-төмен қозғалуынан пайда болатын жұмыс — төменгі сызықтың астындағы ауданға, ал газ көлемінің ұлғайғандағы жұмыс — үстіңгі сызықтың астындағы ауданға тең. Бұдан поршеньнін, газды қысқандағы жұмысынан гөрі, газдың көлемін көбсйту кезіндегі жұмыстың артық екені көрінеді.
Енді осы процесті қайталайық (2, б-сурет), тек мұнда жарты килограмдық алты гирь тасы бар. Мұнда да поршеньге түскен күш (қысым) көбейген сайын, газ көлемі азайып, төменгі қисықпен өрнектелсе, енді оған керісінше әрбір гирь тасын алып, поршень қысымын секірмелі азайтқанда, оған сәйкес цилиндр ішіндегі газ көлемі секірмелі түрде артып отырады және ол жогарғы сызықпен сипатталады. Мүнда екінші процестегі газдың жұмысы біріншісінікінен артық.
Бүл процесті басқаша да қайталауға болады. Егер поршень арқылы цилиндр ішіндегі газға түсетін қысымды шексіз кіші ша-маға көбейтсе, мұндағы процесс бірқалыпты өзгереді және оны дәл осы тәртіппен, кысымды шексіз кіші шамаға кеміткенде де бірқалыпты жүреді. Поршеньге әрқайсысы бір грамдық құм түйір-шігін бір-бірлеп салса, газға түсетін қысым бірқалыпты көбейеді де, газдың көлемі баяу азаяды. Мұндайда, бірінші тәжірибедегі үш саты екіншіде алтыға бөлінсе, үшіншіде үш мың сатыға бөліне-ді екен (2, в-сурет). Демек, әсер етуші қысымды шексіз кіші бөл-шекке жіктеу әлгі сынық сызықты да соншаға бөлумен бірдей. Олай болса, газды кысуды көрсететін теменгі қисық газ қысымы-ның азаюы мен көлемінің көбеюін бейнелейтін жоғарғы сызықка жақындайды да тепе-теңдікке ұмтылады. Мұндайда сызық астындағы көлем де теңеледі. Осы шартқа орай газ көлемі азайғандағы жұмыс ең аз, ал газ көлемі көбейгендегі жұмыс ең көп болады.
Достарыңызбен бөлісу: |