ISSN 1811-184X. Вестник ПГУ
серия
ХИМИКО - БИОЛОГИЧЕСКАЯ. 2014. № 1
18
19
extended and a length of C=O bond is shortened. Thus, in the above-mentioned
cases, presumably proton completely goes into disposition of amine nitrogen of
acetamide. Confirmation of this is, for example, sufficiently considerable distance
between the proton (H
+
) and the oxygen atom of the hydroxyl group of nitric acid
(0,3484 nm) (table 1).
Comparative analysis of the length of the O
a
-Me shows the dependence
of the change in its value from the process of protonation of the amide. In
compounds in which the proton is almost completely moved to acetamide
difference of change of this characteristic is significant: 0,4027, 0,4189 and
0,0034 nm for ZnBr
2
·CH
3
CONH
2
·HBr, Zn (NO
3
)
2
·CH
3
CONH
2
·HNO
3
and Be
(NO
3
)
2
·CH
3
CONH
2
·HNO
3
, respectively.
Geometrical parameters of complex compounds Me-O of zinc salts and
beryllium with unprotonated acetamide (1:1) and with protonated (1: 1: 1) are
shown in tables 2 and 3.
Table 2 – Geometrical parameters of complex compounds Me-O of zinc salts and
beryllium with unprotonated acetamide (1:1), grad.
Compounds
Parameters
ZnBr
2
·CH
3
CONH
2
Zn(NO
3
)
2
·CH
3
CONH
2
ВеBr
2
·CH
3
CONH
2
Ве(NO
3
)
2
·CH
3
CONH
2
∠
O–C–N
113,44
121,01
117,39
117,32
∠
O–C–С
124,51
118,41
119,74
120,86
∠
C–N–H
119,92
121,80
122,93
119,04
117,32
126,12
116,54
121,98
∠
C– С– N
122,05
120,58
122,87
121,74
∠
C–С–H
110,37
113,86
110,37
113,19
110,55
110,52
113,12
110,42
110,42
110,23
112,02
111,64
∠
H –С–H
106,13
107,88
107,88
107,67
106,98
107,68
107,83
106,97
107,83
107,17
107,67
∠
H – N–H
118,29
117,98
116,56
115,30
∠
C–О–Ме
117,21
124,98
115,82
106,95
∠
Cl (Br, O
к. ост
)-
–Ме –О
а
111,87
122,69
104,50
113,50
133,26
106,65
114,18
113,03
Table 3 – Geometrical parameters of complex compounds Me-O of zinc salts and
beryllium with protonated acetamide (1: 1: 1)
Compounds
Parameters
ZnBr
2
·CH
3
CONH
2
·HBr
Zn(NO
3
)
2
·CH
3
CONH
2
·
НNO
3
ВеBr
2
·CH
3
CONH
2
·
HBr
Ве(NO
3
)
2
·CH
3
CONH
2
·
НNO
3
∠
O–C–N
115,14
117,25
116,74
112,96
∠
O–C–С
128,50
125,25
120,94
122,14
∠
C–N–H
108,48
111,71
113,17
111,14
118,58
124,87
110,34
106,44
∠
C– С– N
116,36
117,39
116,75
119,65
∠
C–С–H
111,36
111,25
111,06
110,74
111,53
111,45
112,51
111,10
110,25
111,17
109,94
112,66
∠
H –С–H
107,71
107,52
107,76
107,91
107,54
107,48
108,01
107,24
107,52
108,06
107,26
107,54
∠
H – N–H
108,89
110,68
116,28
109,02
∠
C–О
а
–Ме
37,63
133,70
107,26
112,28
∠
Cl (Br, O
к. ост
)–
Ме – О
а
53,18
169,92
108,59
107,66
105,04
117,70
117,09
105,31
∠
C–N–H
+
109,78
106,79
89,58
112,79
∠
N–H
+
–ост.кисл.
170,47
173,92
48,81
102,03
∠
Cl (Br, O
к. ост
) –
Ме –Cl (Br, O
к. ост
)
134,06
141,55
134,99
133,44
Comparison of the results the calculation of the angular characteristics for
investigated amides allows you to make following conclusion (tables 2 and 3).
As a result of protonation are observed slight changes in the values of the valence
angles, but in good agreement with the change of the interatomic distances in the
molecules of complexes of metal salts; they also depend on the steric factor, as
the case with compounds containing more complicated on spatial structure of an
inorganic acid - nitric.
Analysis of values of the valence angle
∠
O-C-C for the compounds of zinc
and beryllium shows that protonation of the compounds according to the nitrogen
atom of amino group of the acetamide leads to a considerable increase of the
characteristics in comparison to the parent molecule. Most significantly increased
angle
∠
O-C-C in the case of protonation Zn(NO
3
)
2
·CH
3
CONH
2
- the difference
is 6,84°, in that case the highest value of this angle is observed in molecule
Zn(NO
3
)
2
·CH
3
CONH
2
·HNO
3
(128,50 °). Due to the fact that protonation occurs
at the amino nitrogen atom of the acetamide, while amide molecule coordinated
to the central atom of the complex – the metal atom by the carbonyl oxygen atom,
quite naturally occur significant changes in the values of valence angles, containing
a protonated nitrogen atom, namely:
∠
C-N-H,
∠
C-C-N and
∠
H-N-H. There
is a difference in the direction of change of these characteristics when comparing
the geometric parameters for salts of zinc and beryllium, ie, depending on the
electronic nature of the central atom of zinc or beryllium.
Comparison of the values of the angle H-N-H for the protonated and unprotonated
acetamide complexes of zinc and beryllium shows an existence of trend towards
lowering of these values. Among zinc salts greatest difference of change of this setting
belongs to the complex zinc compound, protonated by hydrobromic acid – 9,4°, and
among beryllium salts – by nitric acid – 6,28°. In that case the greatest angle H-N-H
ISSN 1811-184X. Вестник ПГУ
серия
ХИМИКО - БИОЛОГИЧЕСКАЯ. 2014. № 1
20
21
are characteristic in the case of protonation by hydrohalic acids and the least upon
protonation of the researching complexes of nitric acid.
Thus, in the work using the quantum-chemical semiempirical calculation
by the PM3 method, determined the geometric parameters of the protonated
and unprotonated amide compounds and found some changes in the structure
of the compounds. Semiempirical quantum-chemical method PM3 permitted to
evaluate geometric parameters taken for the study of model molecules of complex
compounds of zinc salts and beryllium with different molar ratio of acetamide.
Method allowed to see the impact of different by electronic nature of inorganic
acids, that proceed protonation on the structure of acetamide. Comparative
analysis of the geometrical parameters showed the mutual influence of different
by electronic and spatial nature of atoms and molecules included in the studied
complexes. Based on the described above, clear to see that protonation of the
nitrogen atom of amino group molecules of acetamide has a significant influence
on changing of all the geometric characteristics of the researching compounds.
LIST OF REFERENCES
1 Нурахметов, Н. Н. Амидкислоты. Итоги науки и техники. – ВИНИТИ.
сер. Физ. химия. – 1989. – Т.4. – 64 с.
2 еркасов, р. Ш. Физико-химические основы синтеза и свойства
соединений неорганических кислот с производными ацетамида, перспективы
их применения : Дис. … д-ра хим. наук. – Воронеж – 1992. – 384 с.
3 Нурахметов, Н. Н., беремжанов, б. а. О взаимодействии неорганических
кислот с амидами // Ж. неорг. химии. – 1978. – 23. – №2. – С.504-513
4 Нурахметов, Н. Н., еркасов, р. Ш., Ташенов, а. к. и др. Синтез и
физико-химические свойства соединений неорганических кислот с амидами
// КазГУ. – Деп.рук. в ВИНИТИ №575-82. – 1982. – 5 с.
5 Органическая химия В.Л. Белобородов, С.Э. Зурабян, А.П. Лузин,
Н.А. Тюкавкина; под ред. Н.А. Тюкавкиной. – М. : Дрофа, 2004. – Кн. 1:
Основной курс. – 640 с.
6 Liber, M., Marcovic, D. The temperature variation of the H
A
acidity
function for sulphuric acid the thermodynamics if protonation of amids // J.Chem.
soc. Perkin trans., 1982, №5, P.551-558
*L. N. Gumilev Eurasion National university, Astana;
**S. Toraighyrov PSU, Pavlodar;
***Sh. Ualikhanov
Kokshetau state university, Kokshetau.
Material received on 03.03.2014.
Р. Ш. Ерқасов*, Р. М. Несмеянова**, С. Р. Масақбаева**, А. С. Оралтаева**,
Т. Б. Тугамбаева**, С. Ю. Ковтарева**, Е. Н. Таутова***
Достарыңызбен бөлісу: |