Гнатюк С.А.,
Национальный авиационный университет,
г. Киев, Украина
s.gnatyuk@nau.edu.ua
СОВРЕМЕННЫЕ ТЕНДЕНЦИИ РАЗВИТИЯ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ В
ПРОФИЛЬНЫХ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЯХ
Стремительное развитие информационных и коммуникационных технологий внесло
радикальные коррективы в формирование современного общества. Последнее, взирая на специфику и
уязвимости нового пространства (информационного или киберпространства), все больше
сталкивается с огромным количеством разнообразных угроз (как внешних, так и внутренних). В этом
контексте обеспечение информационной безопасности (ИБ) становится все более важным и
стратегическим вопросом для отдельных граждан, общества и государства в целом. Как следствие, за
последние годы на рынке труда значительно вырос спрос на качественных специалистов в области
ИБ – фактически, развитие и совершенствование системы подготовки соответствующих кадров стало
одной из первоочередных задач государственной политики разных государств. Все большее
количество высших учебных заведений (ВУЗ) постепенно переквалифицируются на подготовку
кадров в области ИБ. В связи с этим ВУЗы, которые готовят специалистов в такой наукоемкой и
стремительно развивающейся области, которой безусловно является ИБ, сталкиваются с большим
количеством проблем, а от оперативности и качества их решения зависит востребованность
411
подготовленных кадров на рынке труда (и, как следствие, рейтинг самого ВУЗа). Согласно мировым
тенденциям к таким проблемам необходимо отнести следующие:
1. Законодательство государства в области ИБ должно учитывать международный опыт,
базироваться на основных стандартах и лучших мировых практиках в сфере ИБ, кибербезопасности и
защиты критической информационной инфраструктуры.
2. Система подготовки кадров в области ИБ должна быть четко структурированной: отдельная
отрасль знаний должна систематизировать все бакалаврские направления и соответствующие им
магистерские программы.
3. Кроме образовательных, должны обязательно быть утвержденные и научные специальности,
которые охватывают все актуальные направления научных исследований в области ИБ и согласованы
с соответствующими аналогами ведущих мировых государств.
4. Сеть диссертационных (специализированных ученых) советов должна объединять ведущих
ученых государства в области ИБ с возможностью привлечения известных зарубежных специалистов
с целью качественной экспертизы диссертаций.
5. Специализированные научные издания (журналы и сборники научных трудов) и
периодические научные национальные и международные конференции (семинары, конгрессы,
симпозиумы и т.п.) должны обеспечивать качественное освещение и апробацию научных и
практических результатов перед мировой общественностью.
6. При профильных ВУЗах должны функционировать специализированные лаборатории для
реализации государственных заказов по разработке и сертификации собственных комплексных
систем защиты информации с обязательным привлечением докторантов, аспирантов и студентов
выпускающих кафедр.
7. Должны быть разработаны соответствующие программы и при профильных ВУЗах
функционировать центры повышения квалификации в области ИБ.
8. Учебные программы и планы должны непрерывно усовершенствоваться соответственно
тенденциям развития информационных и коммуникационных технологий (киберпространства).
9. Государство должно поддерживать научные исследования относительно вопросов
обеспечения ИБ, а сами вопросы должны быть включены в приоритетные направления науки и
техники государства – это поспособствует разработке национальных аппаратных и программных
средств для защиты критических информационных ресурсов государства.
Таким образом, только интеграция образования и науки при поддержке государства позволит
ВУЗам готовить высококлассных конкурентоспособных на мировом рынке специалистов в области
ИБ, которые будут востребованы во всех отраслях народного хозяйства, как в рамках государства, так
и за его границами.
Соколова С.П.
Санкт-Петербургский университет аэрокосмического приборостроения (ГУАП),
г. Санкт-Петербург, Российская Федерация
ИММУНОКОМПЬЮТИНГ И ХАОТИКА: ПРИНЦИПЫ И ПРИЛОЖЕНИЯ
Доклад состоит из двух частей:
1. Представлены результаты по развитию интеллектуальной информационной технологии –
иммунокомпьютинга (ИК) на класс неопределенных систем с интервальной неопределенностью.
2. Представлена вычислительная парадигма хаотики и иммунокомпьютинга для мониторинга
состояния экономической системы.
В первой части доклада представлена структура интервальной системы мониторинга со
структурной динамикой, математические модели и вычислительные процедуры обучения,
распознавания,
решения
задачи
идентификации,
формирования
индекса
риска
по
иммунокомпьютингу. При этом были использованы: интервальный аналог SVD-анализа и
модифицированного распознающего функционала, выраженного через компоненты сингулярного
разложения интервальных матриц (плоской и кубической). Приведены результаты решения
конкретных прикладных задач с неопределенностью интервального типа: оценивание динамики
фондового рынка, оценивание кредитоспособности заемщика, диагностики состояния ядерного
реактора.
412
Во второй части доклада представлены результаты построения гибридной системы
моноторинга, реализующей вычислительную парадигму хаотики и иммунокомпьютинга, и
результаты решения конкретных прикладных задач: формирования набора сценариев, оценивания их
эффективности, формирования индекса риска (аналог стратегической точка перегиба Энди Гроува).
Результаты решения вышеперечисленных задач продемонстрированы с использованием исходных
данных ОАО «Первая генерирующая компания оптового рынка электроэнергии» (ОАО «ОГК-1»).
413
Секция 3
Новые телекоммуникационные технологии (робототехника и другие технологии):
отечественный и мировой опыт.
UDCI 539.143.43.681.501
Aitchanov
B.H
1
.,Olimzhon A. Baimuratov,
1
Aitkul N. Aldibekova
1
Kazakh National Technical University after K. I. Satpaev
2
Suleyman Demirel University
Almaty, Kazakhstan
aitkul_86@mail.ru
APPROACH TO THE SYNTHESIS OF PULSE-FREQUENCY MILK
MAGNETIZATION SYSTEM
Annotation. The article describes the development of methods for parametric synthesis of pulse-frequency
automatic control systems(PFACS) by the production process and by the quality control of dairy products. Pulse-
frequency modulation filter is implemented as an aperiodic element of the 2-order (PFM with FAE).
There was constructed a structural model of PFM with FAE of the 2-order, were obtained equations for the milk
production regime parameters control.
There were proposed approaches of parametric synthesis conversion that directly solves the problem.
The modulator structural model obtained in this article provides the basis for constructing mathematical models
of dynamic pulse-frequency control system of milk production and quality that allow developing further different in
accuracy and complexity in computational procedures methods of analysis and synthesis of the considered in the article
class of milk production systems of pulse-frequency control systems.
Key words: pulse-frequency modulation, aperiodic element of the2-order, milk magnetization, parametric
synthesis, Voters model.
In equipment designed for milk magnetization, which changes the physic-chemical properties of the
last in the direction of improvement, it is necessary to maintain constant a few parameters. In order to obtain
stable output parameters there should be controlled with the high level of accuracy the speed of the milk
through the pipeline and, from the one side, it should be maintained continuously for a long time. From the
other side, the reshouldbe made a magnetic field control, followed by its stabilization.
In order to control the magnetic field in the article [1] there was proposed a system of magnetization of
pulse-frequency modulator with a filter in the form of an aperiodic element of the2-order (PFM with FAE).
Control and regulation of the intensity of the magnetic field can be obtained by the different
methods[2], in order to identify and control the products quality can be possible only with the help of the
nuclear magnetic resonance (NMR) signal from the chemical (selected) elements (for example, from the
atom
). Therefore, it was necessary to develop a primary signal sensor of the NMR [3].The theory of
sensor operation is presented in the article [4].
There is offered to use pulse magnetic fields for liquid products(milk) magnetization, which are
controlled by PFM with FAE of the2-order.
Constructed in the article [1] the structural model of pulse-frequency fluid magnetization system with
a filter in the form of an aperiodic element of the2-orderis the basis for the development of models and
research methods of this control systems class.
The aim of this work is the development of methods of parametric pulse-frequency automatic control
systems synthesis (PFACS) with FAE of the2-order on the basis of mean-square criterion. The base for the
synthesis is the structural model of the systems presented in the article [5] Figure1.
414
Figure 1. Structural model of PFACS with FAE of the 2-order
PFACS with FAE of the2-order of milk magnetization is a closed system with negative feedback. Ina
straight chain of the system consistently operate pulse-frequency modulator PFM with FAE of the 2-order
and a given continuous part(GCP), which includes a forming element FE and actuator mechanism AM. At
the entrance of the system there is operated a random stationary process f (t) and the control object is
influenced by the white noiseμ (t).
PFACS is considered by the objects with delay, a structural model of which is shown in Figure 1[6].
The detailed description of the transformations that take place in the system, and the mathematical
description of PFACS y the objects with delay are given in works [1, 6-9].
The efficiency of the system (see Fig.1) is characterized by the statistical criterion [7]:
,
MQ(x)
I
(1)
where M–sign of the mathematical expectation; Q(x)– a given function of the error.
This criterion includes many well-known types of quality criteria[8].For example, if
2
x
Q(x)
, (2)
we obtain mean square deviation of the error. If
1
2
2
1
,
,
1
,
0
)
(
d
x
d
x
d
x
d
x
Q
, (3)
we obtain the probability of the error from the specified tolerances(d
1
,d
2
)
As can be seen from the modulator description that is used to control objects with delay[10]:
]
t
t
/
)
(
g
),
(
z
,
,
[
H
)
t
(
z
0
0
, (4)
where H – continuous nonlinear functional; parameter
characterizes the random parameters of the
functional H;
)
t
(
g
– sequence of the random control pulses of the given shape;
0
– delay time of a
controlled object;
]
t
t
/
)
(
x
),
(
y
[
Ф
)
t
(
y
0
(5)
where Ф – continuous nonlinear functional with the constant parameters;
]
t
t
/
)
t
(
y
),
(
x
[
W
)
t
(
y
0
0
(6)
where W – input - output conversion operator, implemented in the filterФ;
)
t
(
y
0
– vector of the
initial conditions;
,
]
0
0
/
)
(
[
)
0
(
1
1
1
n
n
n
n
t
t
x
W
t
y
(7)
where
]
0
0
/
)
(
[
1
1
n
n
n
t
t
x
W
siqn
, (8)
– threshold of the pulse device PD;
The output signal of PFM with FAE of the 2-order:
n
n
n
t
t
t
y
)
(
)
(
; (9)
,
]
0
t
t
/
)
(
x
[
W
)
0
t
(
y
1
n
1
n
m
n
1
n
(10)
where
)
0
t
(
y
1
n
1
n
, (11)
reset
PFACS with FAE of the2-order
µ(t)
PD
F
y(t)
f(t)
x(t)
y
•
(t)
z(t)
FE
AM
AE
g(t)
u(t)
GCP
415
m
– parameter of the dynamic pulse-frequency modulator, taking into account the delay effect of a
controlled object(
m
0
).
Characterized by the sequence of its parametersc
1
, ,c
n
.
PFM with FAE of the 2-order is characterized by the vector, whose components are the seven
parameters:
T
c
c
c
c
c
c
c
]
,
,
,
,
,
[
6
5
4
3
2
1
(12)
where
7
6
2
5
1
4
3
2
1
,
,
,
c
γ
,
,
c
Δ
c
c
c
c
k
c
A
m
.
here
– threshold of the pulse device PD;
А–pulse amplitude;
–pulse duration;
k
μ
–amplification factor of FAE of the 2-order;
2
1
,
–time constants;
m
– parameter of the dynamic pulse-frequency modulator, taking into account the delay effect of a
controlled object(
m
0
) (
0
– time of object delay).
Δ, k
μ
,
2
1
,
- characteristic of the reset unit;
А, ,
m
– characteristics of PFU (control pulse)
Incase of linear filter PFM with FAE of the 2-order is characterized by
)
3
(
0
1
l
l
- dimensional
vector[7]:
.
]
,
,
,
[
)
3
(
2
1
0
1
T
l
l
c
c
c
c
(13)
Incase of non-linear filterPFM with FAE of the 2-order is also characterized by the vector with the
constant parameters:
T
n
c
c
c
)
,
,
(
1
(14)
dimension of which is determined by the number of members used in Valera series.
These parameters maybe selected from the allowable range defined in the general case as
0
)
x(t)
ρ(
M
. (15).
The transfer function of the PFM, the filter of which is implemented as an aperiodic element of the 2-
orderischaracterizedby:
p
p
k
p
W
2
)
(
(16)
If in the modulator filter the roots of the characteristic polynomial are real and negative, then the
specified function an be expanded in the following form:
)
1
1
(
)
(
1
2
1
2
p
p
k
p
W
(17)
For the system simplicity we denote
1
2
k
=k
μ.
where k
μ
-amplification factor of FAE of the 2-order;
Due to the given[8]process formalization of the automatic system functioning with pulse-frequency
modulation used for the objects with delay control(see Fig.1), the mathematical formulation of the problem
with its parameters
c
(12) - (14) from the minimum criteria of the quality form (1 ) due to appropriate
restrictions:
)
(
)
(
)
(
t
z
t
f
t
x
, (18)
]
)
(
[
)
(
1
r
r
r
t
y
h
t
z
, (19)
)
(
)
(
t
u
t
y
, (20)
))
(
(
)
(
t
u
t
v
,
(21)
416
]}
1
)
(
)
(
[
1
{
)
(
1
)
(
t
s
t
y
t
y
t
u
,
(22)
)]
(
)[
(
1
)
(
t
v
t
y
t
s
, (23)
)]
(
)
(
[
1
[
)]}
(
)[
(
{
)]
(
[
)
(
t
s
t
y
k
q
t
s
q
t
x
q
t
x
q
t
y
m
(24)
where with the help of
)]
(
[
t
y
h
r
r
symbol is designated r-dimensional convolution of the pulse
responses of the object with delay
)
,
,
,
(
2
1
0
r
r
h
and functions
)
(
i
t
y
,
,
1
i
, т.е [7].
r
i
i
r
r
r
r
t
y
h
r
t
y
h
1
0
1
0
0
)
(
)
,...
,
(
)]
(
[
,
0
-time of object delay;
)}
(
{
)
(
1
p
G
L
t
q
,
)
p
(
G
-the transfer function of the filter Ф of the PFM
with FAE of the 2-order;
))
(
( t
u
-the relay-hysteretic nonlinear element in work [9] (Fig.3);
)]
(
[
)
(
1
p
G
L
t
q
m
m
;
p
e
p
G
p
m
m
1
)
(
;
m
-parameter of PFM with FAE of the 2-order, taking into
account the delay effect of the object.
The task of parametrical synthesis of the PFM with FAE of the 2-order detailed description of which is
given in [12], mathematically formulated as[7]:
min
)]
(
[
t
x
MQ
The result of the proposed methodology for the solution of the task of parametric synthesis is to
implement the conversion of the original task to the task of finding the extremum of a function of several
variables [11]:
min
)
(
c
F
, with
0
)
(
c
P
(25)
by excluding from the equations (18)- (24) the variables x, y, z.
Converting the parametric synthesis can be carried out by different ways. In this article there are
proposed three approaches:
1The original model;
2On the basis of the Valera model;
3Statisticallinearization.
These approaches, on the one hand, directly solve the original problem, but, on the other hand, each
previous path forms the basis for the subsequent, more efficient from a practical point of view. The
procedure for the variables excluding x, y, z from a mathematical model of the original system contains
fundamental difficulties. As it can be seen from equations (18) - (24) the mathematical description of the
system contains an implicit functional relationship (22).
The first path proposed in the article leads to find the pulse-frequency system structure, which, on the one
hand, accurately reproduces the processes occurring in the original system described in [7] (Fig.4.1), and on the
other hand, excludes the "parametric" feedbacks. Replacing PFM with FAE of the 2-order by the equivalent
structure allows to exclude from the mathematical model the implicit functional relations. As a result, the
mathematical model of the system with a linear filter with simple poles takes the following form [10]:
z(t)
-
f(t)
x(t)
;
(26)
)
(
)
(
)
(
1
*
t
t
y
h
t
z
k
k
k
; (27)
)
(
)
(
*
t
v
t
y
; (28)
)
(
)
(
y
t
; (29)
)
)
(
)
(
)]
(
)
(
[
(
)
)
(
)
(
)]
(
)
(
[
(
)
(
0
0
)
(
)
(
1
0
0
)
(
)
(
1
1
2
2
d
s
y
e
d
x
e
k
d
s
y
e
d
x
e
k
t
y
i
t
t
e
i
i
t
t
(30)
417
0
)
(
)
(
)
(
)
(
d
s
t
q
t
x
t
m
; (31)
|
)
(
|
)
(
t
v
t
s
, (32)
where x(t)– system error signal, f(t)– input stationary random process of the system, z(t) –output signal
of the continuous part, which in additional control object with delay includes a forming filter,
)
(
*
t
y
– output
signal of PFM with FAE of the 2-order,
– threshold of pulse device operation, v(t) –output signal of the
pulse forming unit, s(t) – reset signal,
]
1
[
)
(
1
p
e
L
t
q
p
m
m
; y(t) – output signal of PFMwith FAE of the
2-order:
d
e
k
d
x
e
k
d
x
e
k
t
y
e
d
e
k
d
x
e
k
d
x
e
k
t
y
e
t
y
t
t
t
t
t
t
t
n
t
t
t
t
t
t
t
t
t
n
t
t
n
m
n
m
n
n
n
n
m
n
m
n
n
n
)
(
)
(
)]
(
)
(
[
)
0
(
)
(
)
(
)]
(
)
(
[
)
0
(
)
(
)
(
0
)
(
0
)
(
)
(
)
(
0
)
(
0
)
(
)
(
1
1
1
1
1
2
1
2
2
2
(33)
y
i
(t) –output signal of the elementary unit of the filter, resulting in the decomposition of the filter on parallel
connected units with transfer functions(17). Taking in to account equations (18)- (24) the original task of the
parametric synthesis takes the form [7]
min
)
(
x
MQ
under the restrictions
,
0
ρ(x(t))
M
)
(
)
(
)
(
)
(
1
*
t
t
y
h
t
f
t
x
k
k
k
;
)
(
)
(
*
t
v
t
y
;
)
(
)
(
y
t
v
;
)
)
(
)
(
)]
(
)
(
[
(
)
)
(
)
(
)]
(
)
(
[
(
)
(
0
0
)
(
)
(
1
0
0
)
(
)
(
1
1
2
2
d
s
y
e
d
x
e
k
d
s
y
e
d
x
e
k
t
y
i
t
t
e
i
i
t
t
0
,
)
(
)
(
)
(
)
(
d
s
t
q
t
x
t
m
|
)
(
|
)
(
t
v
t
s
. (34)
The second approach for transforming the original task to the form (25) proposed in the article is to
use the functional Voters series apparatus to the task (1). [11] In the work [7] there is shown the procedure
for constructing the Voters model of the system, which has the aim of the sequential opening of the closed
contours based on the solution of the corresponding equations using functional Voters series. Above there is
obtained Voters model PFMwith FAE of the 2-orderwith objects with delay as:
1
0
)
(
)
(
k
r
r
t
f
c
c
t
x
(35)
whereс
r
(t
1
, , t
r
, c) – the pulse characteristics of a closed system, depending on the parameters of the
modulator.
Voters model (35) describes an explicit relationship between the error process (t) and input process f
(t)of the system. With the help of this model there can be excluded variables x, y, z from the
equations(1)[11], and the problem has the parametric form (24)
418
1
0
min
)]
(
[
k
k
k
t
f
n
n
MQ
при
1
0
0
)]
(
[
k
k
k
t
f
n
n
M
. (36)
In many practical cases it is convenient instead of task (1)to use the task obtained by statistical linearization
of Voters model (35). The linear model PFMwith FAE of the 2-order is received in the form [10]
0
0
0
1
0
0
0
,
)
(
)
,
,
,
(
)
,
,
,
(
)
(
d
t
f
c
l
d
m
c
l
t
x
m
i
f
m
i
(37)
where index pay attention on the methods distinction for producing the respective pulse characteristics
)
,
,
,
(
0
0
c
l
m
i
,
)
,
,
,
(
0
1
c
l
m
i
.
On the basis on linear model (37) the task, being solved in this article, is presented in following form
min
)
)
(
)
,
,
,
(
)
,
,
,
(
(
0
0
0
1
0
0
0
d
t
f
c
l
d
m
c
l
MQ
m
i
f
m
i
(38)
when
0
)
)
(
)
,
,
,
(
)
,
,
,
(
(
0
0
0
0
1
0
0
d
t
f
c
l
d
m
c
l
M
m
i
f
m
i
.
The usage of Voters model during the pulse-frequency system synthesis allows obtaining an exact
result. In practical applications the number of elements of the Voters model of the system ultimately leads to
error. However, this error can be reduced by increasing the number of elements. Finally, the Voters model
allows forming different types of linear models; this makes the method of parametric synthesis approximate,
but simpler from a computational point of view.
REFERENCES
1.BekmurzaH. Aitchanov, OlimzhonA. Baimuratov, AitkulN. Aldibekova. Pulse – Frequency control system of
the fluids magnetization of the used nuclear magnetic resonance // The 2nd international virtual Scientific Conference. –
Slovakya, 9 – 13June, 2014. – Р. 473-477
2. Voitovich I. D., Korsunskiy W.M. Intellectual sensors. – Moscow, 2011. – p. 624.
3. Voronin A. M., Aldibekova A.N. Non-contact measurement of fluid flow by nuclear magnetic
resonance.Scientific-theoretical and practical journal/Modern Science Bulletin. 2014.- №7 (203).- p. 5-10
4.Vecherukhin N.M., Melnikov A.W. Sensors of nuclear magnetic resonance as converters of fluid velocity in
the frequency // Scientific Instrument. –Russia, 2007.-Т 17, №2. – p.39-47.
5. Aitchanov B.H. To the construction of mathematical models of one class of stochastic control systems of the objects
with delay // Energy, telecommunications and higher education in the modern world. Almaty: AUPET, 1998. p.108-110.
6. AldibekovaА.N. The use of dynamic pulse-frequency modulator for controlling the process of milk products
production and quality. Bulletin of ATU. Almaty, 2014. №1(102).- p.53-60.
7. Aitchanov B.H. Stochastic pulse-frequency systems with delay. Almaty: Construction and Architecture, 2007.
– p.159.
8. Aitchanov B.H. Methods of mathematical description of pulse-frequency control systems of the objects with
delay // Bulletin of KazNTU. - Almaty KazNTU. 2002. Number 2 (30). - p.72 -82.
9. Aitchanov B.H. Functional series in the theory of stochastic nonlinear systems with delay// Bulletin of
KazNTU. Almaty: KazNTU,2005, №4 (48). p. 117-121.
10.Aitchanov B.H., Yeskendirova D.M. Bulletin of East Kazakhstan state technical university named after D.
Serikbayev, №2, 2010, p. 53-57.
11. Аitchanov B.H. Pulse-frequency management of objects with delay // Nauka i studia, Przemysl, Poland,
2009, N 6 (18), 80-85 P.
12. Aitchanov B.H.,J. Partyka, A. Aldibekova. A dynamic pulse-frequency modulator for controlling the
process of production and quality of milk products // Works of international Satpaev Readings "The role and place of
young scientists in the implementation of the strategy" KAZAKHSTAN-2050"," dedicated to the 80th anniversary of
KazNTU named after K. Satpaev. - Almaty, 2014. - p.3-10.
Айтчанов Б.Х., Баймуратов О.А., Алдибекова А.Н.
Достарыңызбен бөлісу: |