1999 ж. Шыға издается бастады с 1999 г



Pdf көрінісі
бет25/44
Дата18.01.2017
өлшемі5,87 Mb.
#2173
1   ...   21   22   23   24   25   26   27   28   ...   44

Заключение 
Успешное  решение  проблемы  укрепления  устойчивости  лесов  возможно  при  
правильном  ведении  лесного  хозяйства,  сущность  которого  сформировал  классик 
лесоводства  Г.Ф.Морозов  .  Это  стремление  к осуществлению  лесоводственных задач  на 
основе максимальной экономии сил, времени и средств,  при  непрерывном соблюдении 
естественных законов. 
Лесные  насаждения,  прошедшие  естественный  отбор  приобретают  повышенную 
сопротивляемость внешним воздействиям, долговечны и способны к самовозобновлению. 
Популяции в их естественном развитии обычно отличаются сбалансированностью состава 
генотипов, обеспечивающей их высокую устойчивость. 
Для  сохранения  устойчивости  насаждений  необходимо  проводить  следующие 
мероприятия: 
а)  сохранять  на  каждом  этапе  жизни  древостоя  присущую  им  структуру, 
сомкнутость,  а  также  целостность  лесообразующей  среды  –  подлеска,  подроста,  лесной 
подстилки, почвы; 
б) поддерживать действие закона конкуренции и естественного отбора; 
в) соблюдать лесотипологическое соответствие. 
 
Литература 
 
1.
 
Гуриков Д.Е., Ель - краса Тянь-Шаня. Алма-Ата, Кайнар 1983 – с. 44-47, 55, 92-
101. 
2.
 
Морозов.Г.Ф., Учение о лесе. изд. 4-ое 1930.- с .74-78. 

198 
 
3.
 
Межибовский  А.М.  Исследование  оптимальной,  структуры  еловыхнасаждений 
южной  подзоны  Тайги.  //Оптимизация  использования  и  воспроизводства  лесов  СССР.  
1977 .- 
с. 129-144. 
4.
 
Плотников  В.В.  Возможный  способ    оценки  влияния  пространственного 
размещения деревьев на их рост и развитие в лесных сообществах. // Динамика и строение 
лесов на  Урале. Тр.ин-та экологии растений  и животных. Вып.77.- Свердловск, 1970 –с. 
57-63. 
 
Е.Ж. Сембиев, М.В. Шабалина 
 
СОЛТҮСТІК ТЯНЬ-ШАННЫҢ ТАУЛЫ ОРМАНҒА ЖАНАМА ФАКТОРЛАРЫ 
 
Мақалада  орман  алқаптары  аймақтарға  жанама  факторлардың  билігі  қаралады. 
Негізгі іс шара, бұл орман  типологиясына қатысушыларды бақылау, бәсекеге қабілеттік 
заңын көтеру. Негізгі мақсат - бұл Солтүстік Тянь-Шанның ормандау эко жүйесін келтіре 
отырып сактау. 
Кілт сөздер: өскін, орман төсеніші, зерттеу, Шренк Шыршасы, алқаағаш, өздігінен 
өсіп –өну. 
 
E.Z. Sembiyev, M.V. Shabalina 
 
INFLUENCE OF ADDITIONAL FACTORS TO MOUNTAIN FORESTS  
OF THE NORTHERN TINE SHAN 
 
This article is about issues impact of indirect factors to form a forest environment. Main 
activities to preserve the stability plantings are -  compliance with relevant forest types, 
maintaining the laws of competition and natural selection. The aim of this work was preservation 
and reproduction of forest ecosystem of Northern Tien Shan. 
Key words:  young growth, litter, undergrowth, examination, Schrenk spruce plantings, 
self-renewal. 
 
 
UDC 633.111(574) 
 
G. Suleymanova 
1
, Y. Dutbayev
1
, A. Kuresbek 
1
, N. Sultanova
2
, R. Zhapayev
3
,  
А. Morgounov

 
1
Kazakh national agrarian university, Kazakhstan, Almaty, edutbaev@mail.ru 
2
Kazakh scientific-research institute of Plan protection and Quarantine, 
nadira.sultanova@mail.ru 
3
CIMMYT, Kazakhstan, r.zhapayev@cgiar.org 
4
CIMMYT, Turkey, a.morgounov@cgiar.org 
 
BREEDING AND IMMUNOLOGICAL STUDYING OF HEXAPLOID SYNTHETIC WHEAT 
IN SOUTHEASTERN KAZAKHSTAN 
 
Annotation 
In Southeastern Kazakhstan in 2014 were done breeding researches of hexaploid synthetic 
lines (49 lines) of wheat from Japan and CIMMYT. Results showed that lines of Japanese 
hexaploid synthetic wheat had good potential of resistance to diseases on natural  inflectional 

199 
 
phone. By agronomic indexes 5 lines can be used as winter wheat in plant breeding in 
southeastern Kazakhstan. Other 44 lines of synthetic wheat we plane try as spring wheat in 
Northern regions of Kazakhstan. 
Key words: breeding, evaluation, synthetic wheat, line, cultivar, diseases. 
Introduction 
World losses of wheat from harmfulness agents[1],  in present days is a  34%, including 
from diseases–  12%.  Spreading and development of wheat diseases mostly of weather 
conditions, plant growing technology and cultivars features. 
FAO predicts that in  2050 world population will increase to 9 billion . [1] In order to 
satisfy the needs of the world's population by 2030 is necessary to mutilate her potential yield by 
30-40%. For this purpose it is necessary to increase the potential at the annual 1.6-1.8 % 
including 1 % due to breeding and genetic methods. Achieving the latter goal can be in attracting 
the genetic resources of wild relatives . Napralenii important in improving the capacity of this 
culture laid in increasing resistance to abiotic (drought , zharostoykkost , salinity , soil kistotnost) 
and biotic stresses (pests and diseases) . Therefore, actual is a constant yield improvements by 
increasing its genetic potential [2]. 
Currently distant hybridization remains the most effective method of introduction of 
foreign genetic variability in the wheat genome. Synthetic diploids , including the genomes of 
different species of grasses , can greatly facilitate the transfer of the properties of the genetic 
material of wild species to cultivated plants . They also opened up the possibility of 
recombination between genomes isolated at the diploid level [2]. 
Recent studies show that the elimination or substitution of certain chromosomes in the 
nuclear genome of wheat with foreign material is non-random nature and , although the 
mechanism is not known, they occur in early generations of interspecific hybrids and diploids 
during meiosis [14]. Therefore, success in addressing distant hybridization of incompatibility 
genomes parent species, essentially depends on our knowledge of the specific features of meiosis 
hybrids F1. 
At present time, as a result of scientific research the following organizations : CIMMYT - 
Mexico, ICARDA, Syria , Division vivo studies Astral, IPK- Germany, Japan, Kyoto University, 
USDA-ARS was derived synthetic hexaploid wheat. This line were wheat by crossing tetraploid 
and diploid Triticum turgidum wild grass Aegilops tauschi to improve the performance of wheat. 
These hybrids are resistant to biotic and abiotic (drought, high temperature, salinity, lack of 
moisture) and biotic stresses (rusts, septaria, viral diseases, rot shoots, yellow leaf spot, spotted 
gelmintosporioznym, nematodes, powdery mildew, fusarium head blight) [ 2]. 
Synthetic hexaploid wheat has considerable potential yields in different soil and climate, 
especially drought conditions worldwide. Research focuses on the identification of useful genes. 
However, the transfer of useful genes into elite wheat is limited. This information may open the 
way for important resources. Studies to obtain a synthetic wheat directed research aimed at AB 
tetraploid genomes of T. turgidum sspCarthilicum, T. turgidum ssp.diccocum, T. turgidum ssp. 
diccoicum  and determining loci in germplasm A.  Tauschi.  Available molecular studies have 
allowed researchers to conduct detailed analyzes of genome sequencing and develop an effective 
strategy for improving the synthetic wheat. Thus, the synthetic wheat line heksaploid well 
adapted worldwide. However, studies need to be broad study of phenotypes of wheat. 
In the literature there are data on the stability of hybrid lines produced by direct crossing A. 
tauschi  and tetraploid wheat to the Hessian fly, dwarf smut, stem and leaf rust, septoraa and 
helminthosporium leaf spots, cereal cyst nematode and root, fusarium head blight [2-13]. 
Directly transfer genes of these two species can produce homological regombinations and 
could lead to production of genetically synthetic wheat8-9]. During hybridization of Triticum 
monococcum  and  Aegilops spp.  condacts increasing death of young hybrid plants F1 and their 

200 
 
sterility, decreases number of successful recombinations  between diploid and polyploidy wheat. 
All it named as a secondary genofund [`8]. 
Therefore, for wheat breeding must be done searching and  selection of parents forms, 
which have resistance to diseases. According the goal of world population by 2030 need to 
increase potential productivity up to   30-40%.  Realization the last goal is possible in the case of 
utilization of genetic recourses of wild relatives of wheat. Priority direction of improvement of 
this crop could be increasing of resistance to abiotic drought, high temperature, salinity, lack of 
moisture ) and biotic stresses ( pests and diseases).  That’s why the most actual way to improve 
yield of wheat could be an improvement of it genetic potential. Synthetic amphidiploids, which 
include genes of different cereals could make easier transfer important features of genetic 
material from wild species to cultivars. 
Matherial and Methods 
Since 2014 we started breeding and immunological studying of   hexaploid synthetic wheat of 
Kioto university of Japan and CIMMYT (49 lines) on trials of Kazakh scientific research institute 
of of farming and plant growing  by standard methods of plant breeding, plant growing and plant 
pathology. In autumn of 2013 was been received and sowed nursery of hexaploid synthetic wheat 
13JAP-SYNT. Seed of each line  were sowed on one 1 meter row. 
During wheat vegetation were done phenological observation, immunological 
evaluation of material to Leaf rust, Stripe rust, Stem rust and to Leaf spots. Were done 
done evaluation of plant wintering, and mathematical analusis [2, 13]. 
Results 
Hexaploid synthetic wheat has high potential of yield in different soil-climatic conditions, 
especially, in dry areas all over the world. Direction of this researches are identification of useful 
genes. But, transfer of useful genes to elite wheat is limited. This information could open way to 
new resources. Future studies  will be in direction of developing synthetic wheat of AB 
tetraploid genomes of T. turgidum  ssp.  Carthilicum, T. turgidum  ssp.diccocum,  T. turgidum 
ssp.diccoicum  and determining of locuses in germoplasma of A. tauschi. This molecular 
researches can conduct detail analysis of segueing of genome and to develop effective strategy 
for improvement of synthetic wheat. 
In present days, developed lines of hexaploid synthetic wheat quite well were adapted all 
over the world. But in present days phenotipes of wheat need to be studied in conditions of 
Southern, Nothern, Southeastern and Eastern Kazakhstan. In this case the studies  in direction of 
developing of resistant to diseases varieties very perspective. 
Weather conditions in 2013-2014 agricultural year in Almaty oblast was like during many 
years conditions and were middle favorable for diseases development. Winter period was snowy. 
Amount of rainfall in December, January, February and in april was up to 15-50 in comparative 
with normal. Winter crops had good snowfall, which was very useful. The weather condition of 
March of 2014 was normal.  
Discussion 
During wheat heading were done crosses of 10 lines of 
hexaploid wheat (№№ 4, 7, 10, 13, 
15, 17, 22, 26) with 5 commercial cultivars of winter wheat (Zhetisu, Farabi, Azharly, Naz and 
Steklovidnaya). 
During milk ripening stage local cultivars Zhetisu, Farabi and Azharly were injured by 
Stripe Rust up to 10-20%, by Leaf Rust –  up to 5-10% and by Leaf spot blotches –  up to 10-
20%. Lines of synthetic wheat were injured by Stripe Rust up to 1-10%, by Leaf Rust – up to 1-
5% and by Leaf spot blotches –  up to 5-10%. Rust diseases were absent on 41 of 50 lines of 
synthetic wheat Rust diseases were absent. Evaluated lines of synthetic wheat showed good 
resistance to diseases. As the result of structural analysis we have selected 5 lines of synthetic 
wheat (LANGDON/AE 454, LANGDON/IG 47259, LANGDON/KU-2078, LANGDON/KU-
2109, LANGDON/PI 499262), which had good productivity indexes –  plant height, weight of 

201 
 
1000 grain, were more in comparative with standarts –  up to 15,9 gramm, and productivity of 
row – up to 83,9 gramm.  
Conclusion 
Results of investigations showed that lines of Japanese hexaploid synthetic wheat has good 
potential of resistance to diseases on natural inflectional phone. By agronomic indexes 5 lines 
can be used as winter wheat in plant breeding in southeastern Kazakhstan. Other 44 lines of 
synthetic wheat  we plane try as spring wheat in Northern regions of Kazakhstan. 
 

202 
 
 
 
 
Table 1 – Structural analysis of nursery of 14SYNT-JAPAN 
 (Kazakh scientific-research institute of Farming and Plant growing, Almalybak, 2014). 
 

№ 
Line, variety 
Number 
of 
plants 
on 
1
 row 
meter
 
Weight of plants before har
vesting,
 
gr.
 
Number 
of 
grain 
in 
1
 spike
 
Height of 10 spikes,
 sm
 
Weight of 10 spikes,
 gr.
 
Number of ears
 
Number 
of 
grain 
in 
10
 spikes
 
Weight of grain, 
gramm 
+ of weight of 1000 
grain in comparative 
with local check, 
gram 
+ of weight of grain 
weight/row in 
comparative with local 
check, gram 
From one ear
 
1000 kernels
 
From 1 weight/row
 
Zhetisu
 
Azharly
 
F
arabi
 
Zhetisu
 
Azharly
 
F
arabi
 

BEZOSTAYA 
11 
245,0 
73 
8,1 
18,4 
15,0 
414 
1,9 
40,3 
39,6 
-10,5 
+1,2 
-2,7 
-77,2 
-22,1 
-28,6 

LANGDON/AE 454 
11 
251,0 
79 
8,5 
23,7 
17,0 
386 
2,5 
42,2 
99,8 
-7,4 
+3,2 
-0,8 
-17,0 
+38,1 
+31,6 
30 
LANGDON/IG 47259 
12 
320,0 
111  12,0 
18,0 
17,0 
363 
1,8 
34,7 
133,0 
-16,1 
-4,9 
-8,3 
+16,

+71,3 
+64,8 
33 
LANGDON/KU-2078 

125,0 
77 
12,0 
25,5 
15,0 
167 
1,3 
55,0 
34,1 
+4,2 
+15,

+12,

-82,7 
-27,6 
-34,1 
41 
LANGDON/KU-2109 
18 
400,0 
107 
13 
25,6 
9,5 
85 
1,0 
40,0 
70,7 
-10,8 
+0,9 
-3,0 
-46,1 
+71,0 
+9,0 
48 
LANGDON/PI 499262 
22 
340,0 
127 
8,5 
20,9 
16,0 
304 
2,1 
39,6 
145,2 
-11,2 
+0,5 
-3,4 
+28,

+83,5 
+83,5 
 
Zhetisu 
12 
300,0 
60 
7,5 
29,6 
15,0 
441 
3,3 
50,8 
116,8 






 
Azharly 
11 
200,0 
53 
9,5 
19,8 
18,0 
353 
1,4 
39,1 
61,7 






 
Farabi 

160,0 
60 

24,6 
15,0 
120 
2,0 
43,0 
68,2 






 
 

20

 
 
 
 
 
 
T
ab
le 2
 –
 P
he
nol
og
ic
al
 o
bs
er
va
ti
on of
 14S
Y
N
T
-J
A
P
A
N
 an
d
 ev
al
u
at
io
n
 t
o
 d
is
eas
es
 (
K
az
ak
h
 s
ci
en
ti
fi
c-
re
se
ar
ch
 in
stitu
te
  
of
 F
a
rm
ing
 a
nd P
la
nt
 g
ro
w
ing
, A
lm
al
y
ba
k, 2014
).
 
№№
 
Л
ин
ия, с
орт
 

spi
ke
 
w
ei
gh
t,
 gr
 

spi
ke
 
w
ei
gh
t,
 gr
 
Le
n
g
t

o

m
iddl
e l
eaf

cm
 
W
id

o

m
iddl
e l
eaf

cm
 
S
q
u
ar

o
f l
eaf
,  
S
 
H
ei
gh
t o

pl
ant
s, 
sm
 
A
ff
ect
in
g
 b
y
 d
is
e
as
es
, %
 
 
R
us
ts
 
L
e
af
 s
pot

C
ol
or
ing
 
of
 pl
ant

str
ip

leaf
 
st
em
 
 
1
 
B
E
Z
OS
T
AYA
 
13,0
 
2,06
 
15,8
 
1,31
 
72,35
 
67,0
 
0
 
0
 
0
 
0
 
nor
m
al
 
2
 
L
A
NGDON/
A
E
 454
 
14,0
 
2,80
 
16,4
 
1,88
 
107,9
 
86,6
 
0
 
0
 
0
 
5
-10%
 
 
30
 
L
A
NGDON/
IG 4
7
2
5
9
 
10,4
 
2,08
 
15,5
 
1,26
 
68,30
 
92,0
 
0
 
0
 
0
 
5
-10%
 
nor
m
al
 
33
 
L
A
NGDON/
K
U
-2078
 
10,5
 
2,10
 
15,5
 
1,08
 
58,6
 
100,0
 
0
 
0
 
0
 
5
-10%
 
nor
m
al
 
41
 
L
A
NGDON/
K
U
-2109
 
10,6
 
2,12
 
15,8
 
0,89
 
49,20
 
97,3
 
5
-10%
 
0
 
0
 
1
-5%
 
red
 
48
 
L
A
NGDON/
P
I 4
9
9
2
6
2
 
10,6
 
2,12
 
17,6
 
1,15
 
70,80
 
86,0
 
0
 
0
 
0
 
1
-5%
 
red
 
 
Z
h
etis
u
 






10
-20
 
5
-10
 
0
 
10
-20
 
nor
m
al
 
 
A
z
h
ar
ly
 






5
-15
 
5
-10
 
0
 
10
-20
 
nor
m
al
 
 
F
ar
ab







5
-15
 
5
-10
 
0
 
10
-20
 
nor
m
al
 

204 
 
References 
 
1.
 
FAO  statistical yearbook 2013.World food in agriculture. Rome, 2013. –  289 P.1 
Cassman, K. G. 1999. Ecological intensification of cereal production systems: Yield potential, 
soil quality, and precision agriculture. Proc. Natl. Acad. Sci. (USA) 96:5952–5959. 
2.
 
Ogbonnaya, F.C. 2011. Development, management and utilization of synthetic 
hexaploids in wheat improvement. p. 823–849. In: A.P. BonjeanW.J. Angus and M.van Ginkel 
(eds.), The world wheat book: a history of wheat breeding. Vol. 2. Lavoisier, France. 
3.
 
Yu, G.T., T. Wang, K.M. Anderson, M.O. Harris, X. Cai, and S.S. Xu. 2012. 
Evaluation and haplotype analysis of elite synthetic hexaploid wheat lines for resistance to 
Hessian fly. Crop Sci. 52:752–763. 
4.
 
Chu, C.-G., S.S. Xu, T.L. Friesen, and J.D. Faris. 2008b. Whole genome mapping in a 
wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for 
agronomic traits. Mol. Breed. 22:251–266. 
5.
 
Zwart, R.S., J.P. Thompson, A.W. Milgate, U.K. Bansal, P.M. Williamson, H. Raman, 
and H.S.Bariana. 2010. QTL mapping of multiple foliar disease and root-lesion nematode 
resistances in wheat. Mol. Breed. 26:107–124. 
6.
 
Harlan, J.R. and J.M.J.deWit. 1971. Toward a rational classification of cultivated 
plants. Taxon 20:509–517. 
7.
 
Qi, L.L., B. Friebe, P. Zhang, and B. S. Gill. 2007. Homoeologous recombination, 
chromosome engineering and crop improvement. Chromosome Res. 15:3–19. 
8.
 
McFadden, E.S. and E.R. Sears. 1946. The origin of Triticumspelta and its free-
threshing hexaploid relatives. J. Hered. 37:81–89; 107–116. 
9.
 
Gill, B.S. and W.J. Raupp 1987.Direct genetic transfers from Aegilopssquarrosa L. to 
hexaploid wheat. Crop Sci. 27:445–450. 
10.
 
Friebe, B., J. Jiang, W.J. Raupp, R.A. McIntosh, and B. S. Gill. 1996. Characterization 
of wheat-alien translocations conferring resistance to diseases and pests: current status. 
Euphytica 91:59–87. 
11.
 
Mujeeb-Kazi, A. and G. Hettel. 1995. Utilizing wild Grass Biodiversity in Wheat 
Improvement: 15 years of Wide Cross Research at CIMMYT. p. 1–140. 
12.
 
Farrer, W. 1904. Some notes on the wheat ‘Bobs’: its peculiarities, economic value 
and origin. Agr. Gaz. N. S. W. 15:849–854. 
13.
 
Kruse, A. 1969.Intergeneric hybrids between Triticumaestivum L. (v Koga, 2n 
ј 42) 
and Avena sativa L. (v Stal 2n 
ј 42) with pseudogamous seed formation. p. 188–200. In: Royal 
Veterinary and Agricultural College Yearbook 1967. Copenhagen. 
14.
 
Койшыбаев М. Болезни зерновых культур. Алматы: Бастау, 2002. – 367 с. 
 
Сулейманова Г., Дутбаев Е., Күресбек А., Султанова Н., Жапаев Р., Моргунов А. 
 
             
ОҢТҮСТІК-ШЫҒЫС ҚАЗАҚСТАН ЖАҒДАЙЫНДА ГЕКСАПЛОЙДТЫ 
СИНТЕТИКАЛЫҚ БИДАЙҒА СЕЛЛЕКЦИЯЛЫҚ ЖӘНЕ  
ИММУНОЛОГИЯЛЫҚ ЗЕРТТЕУ 
 
Оңтүстік-шығыс  Қазақстан  жағдайында  2014  жылы  Жапония  мен  СИММИТ 
шығарған  49  желісі  гексаплойдты  синтетикалық  бидайға  селлекциялық  зерттеулер 
жүргізілді.    Жүргізілген  зерттеулер  көрсеткендей,  осы  желілердегі  табиғи  инфекциялық 
фонда  бидай  ауруларының  жоғары  төзімділігін  көрсетті.  Оңтүстік-шығыс  аймағында 
агрономиялық  сипаттама  бойынша  күздік  бидайдың  5  желісі  селлекцияда  қолдануға 
болады.  Солтүстік  Қазақстан  аймағында  жаздық  бидайдың  қалған  44  желі  түрлерін 
жүргіземіз. 

205 
 
Сулейманова Г., Дутбаев Е., Куресбек А., Султанова Н., Жапаев Р., Моргунов А. 
 
СЕЛЕКЦИОННОЕ И ИММУНОЛОГИЧЕСКОЕ  ИЗУЧЕНИЕ ГЕКСАПЛОЙДНОЙ 
СИНТЕТИЧЕСКОЙ ПШЕНИЦЫ В ЮГО-ВОСТОЧНОМ КАЗАХСТАНЕ 
 
В  Юго-восточном  Казахстане  в  2014  году  проводилось  селекционное  изучение 
гексаплойдной  синтетической  пшеницы  (49  линий)  селекции  Киотского  университета 
Японии и СИММИТ. Результаты исследований показали, что эти линий имеют высокий 
потенциал  устойчивости  к  болезням  на  естественном  инфекционном  фоне.  По 
агрономическим  характеристике  5  линий  могут  быть  использованы  в  селекции  озимой 
пшеницы  на  юго-востоке  Казахстана.  Другие  44  линий  мы  планируем  испытать  как 
яровые формы в Северном  регионе Казахстана.  
 

Достарыңызбен бөлісу:
1   ...   21   22   23   24   25   26   27   28   ...   44




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет