ЛИТЕРАТУРА
[1] Щерба Г.Н., Лаумулин Т.М., Кудряшов А.В. и др. Геолого-генетические модели главных типов эндогенных
редкометалльных месторождений Казахстана // Генетические модели эндогеных рудных формаций. – Новосибирск:
Наука, 1983. – Т. 2. – С. 3-14.
[2] Субботин И.Н. и др. Пояснительная записка к подсчету запасу Акмаинского редкометального месторождения по
состоянию 01.01.1952 г.
[3] Справочник. Месторождения редких металлов и редких земель Казахстана. – Алматы, 1998. – 136 с.
[4] Омирсериков М.Ш., Исаева Л.Д. Геолого-динамическая модель формирования месторождений редких металлов
Центрального Казахстана. – Алматы, 2010. – C. 215.
REFERENCES
[1] Shherba G.N., Laumulin T.M., Kudrjashov A.V. i dr. Geologo-geneticheskie modeli glavnyh tipov jendogennyh
redkometall'nyh mestorozhdenij Kazahstana // Geneticheskie modeli jendogenyh rudnyh formacij. Novosibirsk: Nauka, 1983.
Vol. 2. P. 3-14.
[2] Subbotin I.N. i dr. Pojasnitel'naja zapiska k podschetu zapasu Akmainskogo redkometal'nogo mestorozhdenija po so-
stojaniju 01.01.1952 g.
[3] Spravochnik. Mestorozhdenija redkih metallov i redkih zemel' Kazahstana. Almaty, 1998. 136 p.
[4] Omirserikov M.Sh., Isaeva L.D. Geologo-dinamicheskaja model' formirovanija mestorozhdenij redkih metallov Central'-
nogo Kazahstana. Almaty, 2010. P. 215.
М. Ш. Өмірсеріков
1
, Н. И. Степаненко
1
, Л. Ж. Исаева
2
, С. К. Асубаева
2
1
Қ. И. Сəтбаев атындағы геологиялық ғылымдар институты, Алматы, Қазақстан,
2
Қ. И. Сəтбаев атындағы Қазақ ұлттық техникалық зерттеу университеті, Алматы, Қазақстан
АҚМАЯ КЕН ОРНЫНЫҢ МОДЕЛЬДІК ҚҰРЫЛЫМЫ
ЖƏНЕ ОНЫҢ БОЛЖАМДЫҚ МАҢЫЗЫ
Аннотация. Мақалада Орталық Қазақстандағы Ақмая кен орыны арқылы металлогенияның қолданбалы
мəселелерiн шешу жолдары көрсетiлген. Ақмая кен орнының 3D моделi тұрғызыды, оның заттық құрамы,
морфологиясы жəне вольфрамның үш валенттi тотығының осы дененiң көлемiндегi таралу ерекшелiктерi
көрсетiлген. Ақмая кен орнының вольфрамга бай деген терең деңгейлерiне болжамдық баға берiлген.
ISSN 2224-5278 Серия геологии и технических наук. № 6. 2016
39
N E W S
OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN
SERIES OF GEOLOGY AND TECHNICAL SCIENCES
ISSN 2224-5278
Volume 6, Number 420 (2016), 39 – 50
UDC 553.463 (574)
M. Sh. Omirserikov
1
, M. K. Kembayev
1
, L. D. Issayeva
2
,
K. Sh. Dyussembayeva
2
, Ewa Slaby
3
, S. K. Assubayeva
2
1
Institute of Geological Sciences named after K. I. Satpayev, Almaty, Kazakhstan,
2
Kazakh National Research Technical University named after K. I. Satpayev, Almaty, Kazakhstan,
3
Institute of Geological Sciences Polish Academy of Sciences, Warsaw, Poland.
E-mail: k.maksat@mail.ru
MINERALOGY AND STRUCTURAL MODEL OF THE WEATHERING
CRUST OF KUNDYBAY DEPOSIT (NORTH KAZAKHSTAN)
Abstract. Kyndybay deposit has a considerable potential for the mineral industry of Kazakhstan. Compre-
hensive study on mineralogy and distribution of rare earth minerals on the deposit were done to facilitate reasonable
use of resources. Around 2000 samples were collected across the study area. The mineral and elemental composition
of ores was determined by the methods of ICP MS, X-ray crystallography and electron probe microanalysis. Light
rare earth elements constitute 46.85% of the reserves, whereas 53.15% is oxides of yttrium, medium and heavy
lanthanides. More than half (58.15%) of rare earths are concentrated in clay minerals. The average concentration of
rare earth minerals in the weathering crust of the deposit is 344.3 g/t. We constructed three dimensional and block
models of four ore bodies, set on the deposit. The lack of horizontal and vertical trend of mineral distribution among
ore bodies is explained by lithologic features of the deposit structure, namely uneven spread of amphibolites, gneiss
and shale. Nevertheless, particular ore bodies have concentration change of oxides of yttrium and rare earths.
Keywords: block model, weathering crust, rare earth elements, Kundybay deposit, oxide of yttrium, lithological
features.
Introduction. Exceptional conductive and magnetic properties of rare earth elements (REE) are the
main reasons of the application for electronic products [1, 2]. Moreover, rechargeable batteries, permanent
magnets, lamp phosphors and other REE containing materials enhance the transition to green economy [3,
4]. All listed are considered to be newer market, taking 41% of worldwide consumption of REE, whereas,
other 59% is used for metallurgy, catalyst and glass making [5]. The increasing global demand for REE
requires smart regulation of the manufacture from the producing countries.
Kazakhstan is one of fourteen Asian country that have rare earth deposits [6, 7]. Due to lack of com-
prehensive study on mineralization of Kazakhstan’s deposits, it has negative effects on REE manufacture
[8]. It is because Kundybay deposit has the regional importance for rare earth industry [9], we find it
necessary to monitor mineralization of the weathering crust of the deposit which determines mineral
composition of deposits that contributes in both studying past environmental changes and prediction of
future development of the industry. Natural contents of rare earth elements in weathering crust are highly
influenced by their weathering state, texture and forms [10-12]. Moreover, surface chemistry and complex
formation with organic and inorganic ligands control the distribution of REE [13].
Three dimensional (3D) modeling of deposit is important tool for quantitative and qualitative
assessment and prediction of mineral resources [14, 15]. The modeling combines geological, geochemical,
and geophysical data to delineate areas of high economic potential at depth [16, 17]. The 3D model of
deposit leads to reasonable use of the resources in mining [18, 19]. We studied the mineralogy of Kundy-
bay deposit including REE distribution, fractionation and forms of occurrence. We paid special attention
on the construction of wire frame 3D modeling of the orebodies of the deposit. The use of 3D models
allows better understanding surface and subsurface geology, consequently ensuring effective mining of the
deposit.
Известия Национальной академии наук Республики Казахстан
40
Study area. The Kundybay deposit is located at Zhitikara district of Kostanai region in north
Kazakhstan (Figure 1). It was explored and known as a titanium reservoir until Niyazov et al. [20], who
discovered it as a source of rare earths [21-22]. Kundybay deposit is associated with Mesozoic weathering
crust of ancient metamorphic rocks of marine series. The ore area is localized along the western exocon-
tact of Shevchenkov serpentinite massif [23]. It is elongated strip, 21x2 km in size, which includes ore
sites [24]. Its structure involves (from bottom to top): 1) crystalline Precambrian rocks, 2) well-preserved
ore-bearing weathering crust, 10-70 m in depth, with a clearly defined "kaolin" profile, 3) clays and loams
of Paleogene-Neogene, 2-10 min depth. The weathering crust is zonal. Bottom leached bedrock changes to
entirely kaolinized formations, followed by unstructured kaolinite on top. Kaolinite is the most common
kaoline mineral, which is widely used in industry [25, 26].
The depth of each zone is 3-20 m. The composition of the zones depends on the degree of weathering
and the ratio of relic and newly formed minerals [10]. The relic minerals are feldspars, amphibole, mica,
quartz, garnet, graphite, piemontite, spessartite, tourmaline, rutile, ilmenite, sphene, titanomagnetite,
coulsonite. The newly-formed minerals are kaolin, limonite, gibbsite, goethite, hydromica, leucoxene,
rare-earth minerals [27, 23].
Figure 1 – Geological map of the study area showing the sampling sites. 1 – Roads with major coverage; 2 – Dirt roads;
3 – Railway; 4 – Sample Location; 5 – Rivers: ((1) width of less than 300 m; (2) drying up; (3) the flow direction of the river)
Materials and methods. Four ore bodies were set on the deposit. They have an elongated shape in
the meridional direction, inheriting stretch of basement (Figure 2). The sampling sites were chosen so that
mineralogical and geochemical compositions approximated the average composition of the deposit.
1. We collected around 2000 samples across the study area. We determined concentration of 35 ele-
ments including 15 REE (La, Ce, Pr, Nd, Sm, Eu, Y, Cd, Tb, Dy, Ho, Er, Tm, Yb, Lu), main elements of
titanium ore (Ti, Ta, Nb, Sn, W, Be), ore elements (Zn, Pb, Cu, Mo, As) and noble elements (Au, Ag, Pt)
by the method of ICP MS.
2. We applied the method of X-ray crystallography (Bruker, US) to determine mineral phases of
loose and granular samples.
ISSN 2224-5278 Серия геологии и технических наук. № 6. 2016
41
3. Since the method of electron microprobe with wavelength dispersive spectrometer (microprobe
JEOL-733, Japan) is one of best examples of standard analytical tool to perform microstructural analysis
[28], we applied it to identify micro inclusions in earth minerals, both in bedrocks and concentrates.
4. We made polished sections and thin rock sections in the grinding shop to study primary REE. We
collected the thin rock sections from the wells included in bedrock formations. In addition, we studied
series of cemented polished sections from various fractions of placer analysis for repeatability control.
5. We selected initial placer samples of various weights from wells to study the mineral composition
of the weathering crust by the placer method. Machining of placer samples was carried out as follows:
weighing → screen sizing → obtaining coarse grain of > 2.00 mm and < 0.16 mm in size → elutriation→
washing in the concentration table → X-ray crystallography of the sludge →duplicating clay fraction and
the intermediate concentrates → obtaining concentrates (shale) → drying. All the obtained fractions were
dried at a temperature of 105º in a muffle furnace.
6. We crushed grab samples of the bedrock to 0.1–5.0 mm size using crushing unit. The coarse grain
of 5.0 mm size was subjected to qualitative visual inspection. The resulting concentrates were weighed
and separated using bromoform (specific gravity (SG) of 2.88). It allows separating minerals with SG
higher and lower than 2.88. Minerals of lower SG float to the surface of bromoform, whereas, heavy ones
settle on the bottom [29]. Both fractions were washed with alcohol and dried. The heavy fraction was
subjected to magnetic and electromagnetic separation, with separation of the magnetic, electromagnetic
and nonmagnetic fractions. All the fractions were weighed in the balance. We studied the mineral com-
position of all fractions under a binocular microscope which is followed by the following methods: drip-
microchemical, optical analysis, monospectral analysis, microprobe, fluorescence spectroscopy, at cathode
rays and, ultraviolet light and X-ray diffraction analysis.
7. To construct 3D visualization of the lithologic structure of the weathering crust the following data
were used: geological maps, sections, sampling plans, calculating tables, directional survey of wells, and
results of chemical analysis. Cartographic materials were exported from Excel file into Micromine
software [15]. For computer simulation a total of 14213 units of information were added from 817 wells.
Figure 2 – Schematic geological map of Kundybay deposit: 1 – Amphibolites: melanocratic up to anhimonomineral;
2 – Gneisses: 1) anhimono mineralfeldspathic, fenitized until fenites; 3 – Microgneisses: 1) muscovite; 2) biotite;
3) biotite-muscovite; 4) biotite-hornblendic; 4 – Crystalline shales ofmedium-high levels of metamorphism; 5 – Shales of low
level of metamorphism: 6 – Serpentinites; 7 – Dikes: 1) diabase and diabase porphyrites; 2) albitophyres; 3) pegmatites;
8 – Tectonic breccia and mylonites, according holes, boudinaged rocks; 9 – Data interpretation: 1) tectonic faults
by the nature of gullies and ravines figure, tectonic faults by the landing hollows and depressions;
10 – Dip and strike: 1) horizontal and sloping (rocks); 2) sloping (dikes); 11 – Orebody
Известия Национальной академии наук Республики Казахстан
42
8. The distribution pattern of REE was identified by block models of the study area which generated
by the ordinary Kriging method using Micromine software [15]. At first, we build empty block models.
They had a size of 50x200x10 m along the X-, Y- and Z-axes. Then we distinguished the blocks that inter-
sect with the borders of the particular ore body. Then bordered model was divided into empty cells that are
filled with the concentration values of REE. The minimum cell size was 10x10x10 m along the X-, Y-,
and Z-axes. Such block sizes fit the parameters of exploration grid of the site and the proportions of the
ore body. Later the values were used for the interpolation of the contents of REY oxides. Next, the content
of REY oxides was determined by the method of inverse distance weighting [30, 31] for each block.
Results and discussion. Statistical analysis of geological data. The classical statistic analysis of all
the samples was done to assess the natural cut-off grade of REE (Figure 3), and to determine the para-
meters of the distribution (Table 1).
Figure 3 – The logarithmic histogram for REE content form 0.001%
Table 1 – The parameters of the distribution of REE
Minimum 0.00055 Median 0.02670
Maximum
0.97130
Mean value of ln
-3.60991
The second highest
0.70500
Standard deviation of ln
0.67435
The third highest
0.66000
Geometric mean value
0.02705
The firth highest
0.59800
Geometric standard deviation
1.96276
Amount 14213
Sichel’s
assessment
0.03396
Average 0.03443
Sichel’s
V 0.45475
Dispersion 0.00102
Sichel’s
Gamma
1.25530
Standard deviation
0.03192
Сhi-square adjustment
1328.88734
Variability index
0.92701
Number of degrees of freedom
49
Figure 4 shows a cumulative probability of REE of limited content. There is a slight inflection point
at the value of 0.034% (the intersection of the actual curve of the probability distribution with a normal
curve). This value can be chosen as the natural cut-off grade value for the interpretation of limits of REE
[32]. We chose the value of 0.03% as an actual cut-off grade for the interpretation.
ISSN 2224-5278 Серия геологии и технических наук. № 6. 2016
43
Figure 4 – The probability distribution of REE content from 0.001 %
The classical statistical analysis was repeated for the samples and composite samples that were within
the limits of delineation. The aims of the repetition was to evaluate whether separation of populations
would be needed, if there are more than one population, to define top cut-off grade threshold for the
interpolation of REE content; and to assess the validity of the application of Kriging method [33] for the
interpolation.
Construction of the 3D model of lithologic structure of the ore bodies. After delineation of ore bodies
by REE cut-off grade, the 3D model was constructed to identify the lithological characteristics of the de-
posit and visualize the morphology of the ore bodies, and to assess their geometrical parameters (Figure 5).
Figure 5 – 3D model of lithologic structure of ore bodies. Yellow – the Paleogene-Neogene and Quaternary sediments;
gray – weathering crust; Pink – crystalline Precambrian rocks (amphibolites, gneisses, shales)
According to Niyazov et al. [20], three groups of rocks are involved in the deposit structure.1) the
crystalline Precambrian rocks lye at the base of the deposit (amphibolite, gneiss, shale). Precambrian
metamorphic rocks are the oldest at the deposit. Its lithologic-petrographic composition is mottled. The
rocks are conditionally subdivided into three horizons in regard to its location in the stratigraphic column:
upper - quartzite slate, medium – amphibolites, and lower – gneiss. 2) The depth of the loose weathering
crust of Precambrian rocks of Mesozoic age ranges between few to several tens of meters (on average 20-
40 m). It lies almost horizontally as a coat, which preserves almost 95% of the area of Precambrian rocks.
Известия Национальной академии наук Республики Казахстан
44
3) Covering sheath of clays and loams from the Paleogene-Neogene and Quaternary age rest erosively and
almost horizontally in the weathering crusts. It has a depth of 0.5-10.0 m, maximum depth of cover rocks
is up to 35.0 m (within the Third and Fourth ore bodies).
The weathering crusts of all lithologic varieties of basement rocks (amphibolites, gneisses, shale) are
ore-bearing, and are clearly distinguished visually. Lack of correlation between type of the lithologic rocks
and contents of REE in it exempts from fractional division of rocks in the model.
According to geological data, the most distributed rocks within the deposit are gneiss and its crust,
taking 58.8% of all rocks of deposits. However, gneiss and its crust don’t dominate in all the areas of the
deposits and ore bodies: the southern part of the first ore body (77.4%), the fourth ore body (66.7%), the
third ore body (44.0%), the northern part of the first ore body (28.4%) and the second ore body (9.9%).
The content of amphibolites and its crust reaches up to 20.3% of the rocks. The second (88.9%) and third
(41.2%) ore bodies, which are located in the western part of the deposit, are the richest in amphibolites
and its crust. Slate and its weathering crust are confined mainly to the western part of the deposit, ta-
king17.9% of the deposit. The highest concentrations of slate are in northern part of the First ore body
(60.2%), and the Fourth orebody (19.7%). There is no slate in the Second ore body. Dike rock (diabase)
and its crust are slightly distributed at the deposit and constitute only 3% of the rocks. They are confined
to the Third ore body (8.3%) at the most, to the Second orebody (0.4%) at the least. The most distributed
metamorphic rocks, which ores of yttrium and REE are developed from, consist of biotite, biotite-garnet,
amphibole-garnet and chlorite-amphibole-garnet gneiss; melanocratic, ordinary and leucocratic amphi-
bolites with epidote, chlorite, garnet and biotite; plagioclase-quartz-muscovite, plagioclase, chlorite-mus-
covite, Piedmont-spessartine shale and amphibolite.
Almost the entire weathering crust of the deposit contains yttrium and REE as it is impossible to
distinguish visually ore minerals from non-metallic crust, they are determined only by the analytical
method. Forms of ore bodies are simple, elongated, and has the parameter shown in the Table 2.
Table 2 – The parameters of the orebodies
Parameters
The first
orebody
The second
orebody
The third
orebody
The forth
orebody
Length, m
2865
820
920
850
Width, m
84-500
125- 250
50-200
45- 500
Max. undercut depth, m
80
35-40
60
110
Depth mark, m
290
290
295
255
Depth of ore on the wells, m
2.0 - 72.0
1.1-28.0
1.5-21.5
1.3-67.8
Average depth of the ore on the wells, m
18.8
8.6
8.2
17.4
Construction of the block model of the deposit. Block models enable to observe ore bodies from
different perspectives (from top, bottom, and sides) with the distribution values of REM [34]. Changes in
RE m concentrations within individual ore bodies directly depend on the composition of the primary
weathering crust rocks. According to Burkov V. [35], the average content of REE oxides in the primary
rocks increases from amphibolites (medium horizon) to gneiss (lower horizon) and slates (upper horizon).
Each of the ore bodies are described with respect to the block model:
The first ore body (Figure 6). The vertical scale of the ore body ranges from 30 to 80 m. Areas con-
taining 0.06–0.09% REM are found both in the upper and lower levels of the ore body. The concentration
of REM decreases with depth in the northern part. There are extensive sites with lower content of REM
than the cut-off grade. The southern part of the ore body has a rather uniform distribution of REM, where
the weathering crust of gneiss is develop extensively.
The second orebody (Figure 6). The maximum depth of the orebody is 40-45 m. There is a uniform
distribution of REM on the site. The weathering crust of amphibolite is developed extensively (88.9%).
The third orebody (Figure 7). The maximum depth of the orebody is 40-45 m. The distribution of
REM on the orebody is non uniform. The upper horizons are poor in REM, containing lower amounts than
cut-off grade. The concentration of REM increases with the depth. Consequently, the middle and lower
ISSN 2224-5278 Серия геологии и технических наук. № 6. 2016
45
Figure 6 – The block models of the first and second orebodies (view from below)
Figure 7 – The block models of the third and fourth orebodies (view from below)
horizons contain highest concentrations of REM, which is 0.06 - 0.09%. The weathering crusts of gneiss
(41%) and amphibolite (44%) are well developed.
The forth orebody (Figure 7). The depth of the orebody reaches up to 70 m. The content of REM
varies significantly. The upper horizons of the orebody, where gneiss (66.7%) is well developed, contain
high amount of REM (0,06-0,09% or more). They have a limited distribution in the lower horizons.
There is no horizontal or vertical trend of changes of the concentrations of REM within the deposit.
Nevertheless, such trend is found within the third orebody. The average concentration of REM in the
deposit is 344.3 g/t.
Forms of occurrence of rare earths in the weathering crust of Kundybay deposit. RE and yttrium in
the weathering crust exists in three forms: 1) in the ion-adsorbed form in clay (kaolinite, halloysite, goe-
thite). They are formed by clay minerals absorption when natural water with rare earth ions migrates [36].
Nature and amount of absorbed REE onto the minerals are controlled by acidity and ionic strength of the
water [37]. According to the chemical composition of the weathering crust and clay fractions, from 13 to
90.3% of REE (on average 58.15%) are associated with minerals of 1) clay fractions; 2) in forms of mine-
rals of churchite, neodymium-churchite, yttrium rhabdophanite, neodymium-bastnesite, and parisite. The
Известия Национальной академии наук Республики Казахстан
46
main ore mineral is churchite with the concentration of from 0.3 to 56 kg/m3; 3) isomorphically associated
with the relic endogenous rock-forming minerals, such as garnet, apatite, orthite and others.
The mineral composition of the weathering crust is shown it the Table 3. The placer samples are
shown in Figures 8, 9, where churchite is the most distributed.
Table 3 – Mineral composition of the weathering crust of Kundybay deposit
Main
Secondary
Rare and accessory
Ore
Churchite
Yttrium-neodymium bastnesite
Neodymium yttrium-parisite
Yttrium rhabdophanite*
Hydrophosphate of REM *
Ilmenorutile
Goethite
Hydrogoethite
Manganese oxides
Leucoxene
Magnetite
Hematite
Ilmenite
Zircon
Pyrite
Rutile
Non-metallic
Quartz
Albite
Mica
Amphibole
Epidote-zoisite
Garnet
Kyanite
Apatite
*The minerals found by other authors [21].
The concentration of rare earth minerals, among which churchite is the main mineral, increases
towards the area of structural kaolin, particularly to its lower half. The clay minerals are the primary
concentrators of REE [38], and REE are found at its nodes and interstices of structural lattices. It is ex-
plained by specific surface area and adsorption property of clay minerals [13]. Bixbite minerals
(manganese ore) are found in the depth of 5 m on average, and can be interesting as the source of REE.
They are developed by the Piedmont-spessartine manganese sands.
Figure 8 – The placer sample with REM
ISSN 2224-
REE
content of
black, dar
collapse s
(martitizat
The main
parisite, w
yellow, ora
Minerals o
Magnetite w
of hematite
The c
1000 kg/m
ores. The
tration of m
the lanthan
neodymium
linium - 1
erbium - 1
Concl
1. Th
metamorph
-5278
are accumul
f hematite an
rk brown-bla
tructure in t
tion). The co
minerals o
which are als
ange-brown,
of magnetic frac
with high conte
e and martite
concentration
m3 (600 in av
proportion o
medium and
nides, taken
m - 15.2% (
1.8%, terbium
2.2%, thuliu
lusion. The m
he mineraliza
hic rocks rep
Figure 9 – Chu
lated mainly
nd martite in
ack, reddish-
the electrom
olor is dark b
f non-magn
so found in t
, dark brown
Table 4
ction
ent Ore
min
leucoxe
REEs a
neodym
Non-me
garnet.
n of total ytt
verage) in m
of yttrium is
d heavy REE
as 100%, a
(34 light lan
m - 2.0%, dy
um - 1.9%, yt
main finding
ation of the
presented m
urchite in the sh
in the non-
n the magnet
-brown and
magnetic frac
brown-red. Th
netic fraction
the electrom
n, in the form
4 – The mineral
Minerals of e
nerals are – hem
ene, hydroxides
are bastnesite yt
mium-parisite 15
etallic minerals
trium and RE
medium quali
s 54%.Norm
with small c
as follows: la
nthanides – 3
ysprosium -
tterbium - 11
gs include:
deposit is g
mainly by gne
47
hale sample. Zo
-magnetic fra
tic fraction.
black. Ther
ction. The fo
here are also
n are zircon
magnetic frac
ms of spheroid
ls of heavy frac
electromagnetic
matite, ilmenite
s of iron, manga
ttrium and yttriu
5%.
s are amphibole
E ranges fro
ity ores, and
mally, rare ea
content of LR
anthanum -
34.3%in tota
15.4%, holm
1.3%, lutetium
genetically r
eisses, shale
Серия геол
oom 100x, сross
action (Tabl
The shape o
re is hemati
form of hem
o ore, non-me
n, yttrium ba
ction. The yt
dal, spherica
ction (weatherin
c fraction
, ilmenorutile,
anese oxides;
um and
, epidote-zoisite
om 150 to 30
d from 1 to 2
arth deposits
REE [6]. Co
6.6%, cerium
al); samarium
mium - 3.6%
m - 1.2% (he
related to th
es and amphi
логии и техн
s polarized light
e 4). There
of grain is o
ite with ilme
matite grains
etallic, rare a
astnesite, ytt
ttrium bastne
al grains.
ng crust)
Minera
e,
REEs ar
yttrium n
zircon -
rutile, ky
00 g/m3 in p
23 kg/m3 (2
rich in yttri
omposition o
m - 11.2%, p
m - 4.6%, e
(intermediat
eavy REE26
he processes
ibolites. The
нических наук
t
is magnetite
octahedral. T
enite inclusi
is flat with
and accessor
trium and n
esite looks w
als of non-magn
re yttrium bastn
neodymium par
35%, others- le
yanite, pyrite, a
poor ores, fr
kg on avera
ium have hig
f the remain
praseodymiu
europium - 2
te REE - 39%
.7% in total)
of crust for
e source of R
к. № 6. 2016
e with high
The color is
ions of the
h octahedra
ry minerals.
neodymium
white, light
netic fraction
nesite and
risite - 60%,
eucoxene,
apatite
rom 300 to
age) in rich
gh concen-
ing 46% of
um - 1.2%,
2.0% gado-
% in total);
).
rmation by
REE in the
Известия Национальной академии наук Республики Казахстан
48
weathering crusts are basement rocks, such as gneisses and amphibolites, which has a relatively high
content of yttrium lanthanides and yttrium.
2. LREE constitutes 46.85% of the reserves of the deposit, while 53.15% is oxides of yttrium,
medium and heavy lanthanides. The content of LREE in weathering crusts decreases from slates to
gneisses and amphibolite. Medium and heavy lanthanides and yttrium are mostly concentrated in the
crusts of amphibolite and dyke rocks.
3. Rare earths released from minerals of metamorphic rocks during weathering are absorbed mostly
by clay minerals (58.15% of total REE on average).
4. Block models of ore bodies demonstrate that there is no horizontal or vertical trend of changes of
the concentrations of REE within the deposit. Only in third ore body, concentration of REE increases with
depth. No uniform distribution of REE in other ore bodies is due to uneven spread of amphibolites, gneiss
and shale.
REFERENCES
[1] Pitts M. (2011) Endangered elements? New Sci. 209: 26–27. doi:10.1016/S0262-4079(11)60321-7
[2] Klinger J.M. (2015) A historical geography of rare earth elements: From discovery to the atomic age. Extr. Ind. Soc. 2:
572–580. doi:10.1016/j.exis.2015.05.006
[3] Binnemans K., Jones P.T., Blanpain B., Van Gerven T., Yang Y., Walton A., Buchert M. (2013) Recycling of rare earths:
A critical review. J. Clean. Prod. 51: 1–22. doi:10.1016/j.jclepro.2012.12.037
[4] Jordens A., Cheng Y.P., Waters K.E. (2013) A review of the beneficiation of rare earth element bearing minerals. Miner.
Eng. 41: 97–114. doi:10.1016/j.mineng.2012.10.017
[5] Charalampides G., Vatalis K.I., Apostoplos B., Ploutarch-Nikolas B. (2015) Rare Earth Elements: Industrial Applica-
tions and Economic Dependency of Europe. Procedia Econ. Financ. 24: 126–135. doi:10.1016/S2212-5671(15)00630-9
[6] Chen Z. (2011) Global rare earth resources and scenarios of future rare earth industry. J. Rare Earths 29: 1–6.
doi:10.1016/S1002-0721(10)60401-2
[7] Massari S., Ruberti M. (2013) Rare earth elements as critical raw materials: Focus on international markets and future
strategies. Resour. Policy 38: 36–43. doi:10.1016/j.resourpol.2012.07.001
[8] Naymanbayev M., Lokhova N., Baltabekova Z. (2013) Classification of Raw Sources of Rare-Earth Elements in
Kazakhstan. J. Mater. Sci. Eng. 3: 326–330.
[9] Kolesnikov A., Gaidukov E., Rakov D. (2015) features of electroflotaion extraction scandium (iii) from aqueous electro-
lytes. Adv. Chem. Chem. Technol. 29: 11–14.
[10] Hu Z., Haneklaus S., Sparovek G., Schnug E. (2006) Rare Earth Elements in Soils. Commun. Soil Sci. Plant Anal. 37:
1381–1420. doi:10.1080/00103620600628680
[11] Grilli E., Colella A., Oppola E., Langella A., Buondonno A. (2011) Modelling pedogenization of zeolitized tuff: effects
of water and phenolic substances on weathering rates of the Campanian Ignimbrite (yellow facies). Clay Miner. 46: 311–327.
doi:10.1180/claymin.2011.046.2.311
[12] de Sá Paye H., de Mello J.W.V., de Magalhães Mascarenhas G.R.L., Gasparon M. (2014) Distribution and fractionation
of the rare earth elements in Brazilian soils. J. Geochemical Explor. 161: 27–41. doi:10.1016/j.gexplo.2015.09.003
[13] Och L.M., Muller B., Wichser A., Ulrich A., Vologina E.G., Sturm M. (2014) Rare earth elements in the sediments of
Lake Baikal. Chem. Geol. 376: 61–75. doi:10.1016/j.chemgeo.2014.03.018
[14] Gong J., Cheng P., Wang Y. (2004) Three-dimensional modeling and application in geological exploration engineering.
Comput. Geosci. 30: 391–404. doi:10.1016/j.cageo.2003.06.003
[15] Wang G., Pang Z., Boisvert J.B., Hao Y., Cao Y., Qu J. (2013) Quantitative assessment of mineral resources by com-
bining geostatistics and fractal methods in the Tongshan porphyry Cu deposit (China). J. Geochemical Explor. 134: 85–98.
doi:10.1016/j.gexplo.2013.08.004
[16] Wu Q., Xu H., Zou X. (2005) An effective method for 3D geological modeling with multi-source data integration.
Comput. Geosci. 31: 35–43. doi:10.1016/j.cageo.2004.09.005
[17] Zanchi A., Francesca S., Stefano Z., Simone S., Graziano G. (2009) 3D reconstruction of complex geological bodies:
Examples from the Alps. Comput. Geosci. 35: 49–69. doi:10.1016/j.cageo.2007.09.003
[18] Fallara F., Legault M., Rabeau O. (2006) 3-D Integrated Geological Modeling in the Abitibi Subprovince (Quebec,
Canada): Techniques and Applications. Explor. Min. Geol. 15: 27–43. doi:10.2113/gsemg.15.1-2.27
[19] Luo Z., Xiao-ming L., Jia-hong S., Ya-bin W., Wang-ping L. (2007) Deposit 3D modeling and application. J. Cent.
South Univ. Technol. 14: 225–229. doi:10.1007/s11771-007-0045-9
[20] Niyazov A., Jafarov N., Brylin M. (2007) Kundybay titanium deposit. J. Min. Geol. 2: 10–15.
[21] Podporina E., Niyazov A., Brylin M. (1980) A new type of rare earth deposits in weathering crusts. Exog. Depos. rare
Elem. 21–26.
[22] Jafarov N., Kaskevich T. (2013) The resource base of rare earth metals in the Zhetygary ore district. J. Min. Geol. 1–2:
33–37.
[23] Omirserikov M., Dyussembayeva K., Isayeva L., Kembayev M., Assubayeva S. (2015) Forms of occurrence of rare
earth elements in the weathering crust of kundybay deposit (north kazakhstan), in: 15th International Multidisciplinary Scientific
GeoConference SGEM 2015. pp. 159–166. doi:10.5593/SGEM2015/B11/S1.021
ISSN 2224-5278 Серия геологии и технических наук. № 6. 2016
49
[24] Isaeva L., Sarsenbaeva A. (2014) Rare earth minerals in the weathering crust deposit Kundybay, in: Satpaev Readings.
KazNTU, Almaty, pp. 54–58.
[25] Gougazeh M., Buhl J.C. (2010) Geochemical and mineralogical characterization of the Jabal Al-Harad kaolin deposit,
southern Jordan, for its possible utilization. Clay Miner. 45: 301–314. doi:10.1180/claymin.2010.045.3.301
[26] Yanık G. (2011) Mineralogical, crystallographic and technological characteristics of Yaylayolu kaolin (Kütahya,
Turkey). Clay Miner. 46: 397–410. doi:10.1180/claymin.2011.046.3.397
[27] Kudaybergenova N., Fazylova O., Sharipova N. (2014) Ilmanite minerral in deposits of Kazakstan. N E W S Acad. Sci.
Repub. Kazakhstan (series Geol. Tech. Sci. 5: 40–45.
[28] Borghi A., Spiess R. (2004) Studying metamorphic microstructures: a brief insight on modern methodological approa-
ches. Period. di Mineral. 235–247.
[29] Yang S.Y., Jung H.S., Choi M.S., Li C.X. (2002) The rare earth element compositions of the Changjiang (Yangtze) and
Huanghe (Yellow) river sediments. Earth Planet. Sci. Lett. 201: 407–419. doi:10.1016/S0012-821X(02)00715-X
[30] Zimmerman D., Pavlik C., Ruggles A., Armstrong M.P. (1999) An Experimental Comparison of Ordinary and
Universal Kriging and Inverse Distance Weighting. Math. Geol. 31: 375–390. doi:10.1023/A:1007586507433
[31] Lu G.Y., Wong D.W. (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci.
34: 1044–1055. doi:10.1016/j.cageo.2007.07.010
[32] Matheron G. (1963) Principles of geostatistics. Econ. Geol. 58: 1246–1266. doi:10.2113/gsecongeo.58.8.1246
[33] Emery X. (2006) Ordinary multigaussian kriging for mapping conditional probabilities of soil properties. Geoderma
132: 75–88. doi:10.1016/j.geoderma.2005.04.019
[34] Zhu L., He Z., Pan X., Wu X. (2006) An Approach to Computer Modeling of Geological Faults in 3D and an
Application. J. China Univ. Min. Technol. 16: 461–465. doi:10.1016/S1006-1266(07)60048-0
[35] Burkov V. (1980) Weathering crust of sedimentary-metamorphic rocks with rhabdophanite and churchite. Depos.
lithophilic rare Met. 394–396.
[36] Xiao Y., Huang L., Long Z., Feng Z., Wang L. (2016) Adsorption ability of rare earth elements on clay minerals and its
practical performance. J. Rare Earths 34: 543–548. doi:10.1016/S1002-0721(16)60060-1
[37] Laveuf C., Cornu S. (2009) A review on the potentiality of Rare Earth Elements to trace pedogenetic processes.
Geoderma 154: 1–12. doi:10.1016/j.geoderma.2009.10.002
[38] Li C.S., Shi X.F., Kao S.J., Liu Y.G., Lyu H.H., Zou J.J., Liu S.F., Qiao S.Q. (2013) Rare earth elements in fine-grained
sediments of major rivers from the high-standing island of Taiwan. J. Asian Earth Sci. 69: 39–47.
doi:10.1016/j.jseaes.2013.03.001
М. Ш. Омирсериков
1
, М. К. Кембаев
1
, Л. Д. Исаева
2
,
К. Ш. Дюсембаева
2
, Ewa Slaby
3
, С. К. Асубаева
2
1
Қ. И. Сəтбаев атындағы геологиялық ғылымдар институты, Алматы, Қазақстан,
2
Қ. И. Сəтбаев атындағы Қазақ ұлттық техникалық зерттеу университеті, Алматы, Қазақстан,
3
Геологиялық ғылымдар институты Польша Ғылым Академиясы, Варшава, Польша
ҚҰНДЫБАЙ КЕНОРНЫ (СОЛТҮСТІК ҚАЗАҚСТАН) МОРУ ҚЫРТЫСЫНЫҢ
МИНЕРАЛОГИЯСЫ ЖƏНЕ ҚҰРЫЛЫМДЫҚ МОДЕЛІ
Аннотация. Құндыбай кенорны Қазақстан Республикасының тау-кен өнеркəсібі үшін айтарлықтай
потенциалға ие. Кенорын минералды қорларын дəйекті қолдануына жағдай жасау үшін минералогиялық жə-
не сирекжер минералдарының таралуына кешенді зерттеулер жүргізілген. Барлық зерттеу аумағы бойынша
2000-ға жуық сынама жинақталынған. Кенорын кендерінің минералды жəне элементті құрамы ICP-MS, рент-
генді-құрылымдық талдау жəне рентгенді-спектралды микроталдау əдістері бойынша анықталынған. Жеңіл
сирекжерлі элементтер қорлардың 46,85% құрайды да, сонымен қатар иттрий оксидтері, орта жəне ауыр
лантаноидтар 53,15% құрайды. Сирек жерлердің жартысына жуығы (58,15%) сазды минералдарда шоғыр-
ланған. Кенорынның мору қыртысындағы сирекжерлі минералдарының орташа концентрациясы 344,3 г/т
құрайды. Үшөлшемді жəне блокты модельдер аталған кенорында анықталынған төрт кенді денелер үшін тұр-
ғызылған. Жалпы алғанда, кенорын бойынша блокты модель негізінде анықталынған иттрий оксиді жəне
сирекжерлер мөлшерлері соммасының өзгеруінің анық заңдылығы кенорын көлемінде көлденең жəне тік
бағыт бойынша байқалмайды. Содан басқа, бөлек кенді денелер бойынша иттрий оксиді жəне сирекжерлер-
дің концентрациясының соммасының өзгеруі бақыланады. Мұндай өзгерістер кенорынның литологиялық
ерекшеліктерімен, дəлірек айтсақ, амфиболиттер, гнейстер жəне де тақтатастардың таралуымен байланысты
болып келеді.
Түйін сөздер: блокты модель, мору қыртысы, сирекжерлі элементтер, Құндыбай кенорны, иттрий окси-
ді, литологиялық ерекшеліктері.
Известия Национальной академии наук Республики Казахстан
50
М. Ш. Омирсериков
1
, М. К. Кембаев
1
, Л. Д. Исаева
2
,
К. Ш. Дюсембаева
2
, Ewa Slaby
3
, С. К. Асубаева
2
1
Институт геологических наук им. К. И. Сатпаева, Алматы, Казахстан,
2
Казахский национальный исследовательский технический университет им. К. И. Сатпаева,
Алматы, Казахстан,
3
Институт геологических наук Польской академии наук, Варшава, Польша
МИНЕРОЛОГИЯ И СТРУКТУРНАЯ МОДЕЛЬ КОРЫ ВЫВЕТРИВАНИЯ
МЕСТОРОЖДЕНИЯ КУНДЫБАЙ (СЕВЕРНЫЙ КАЗАХСТАН)
Аннотация. Месторождение Кундыбай имеет значительный потенциал для горнодобывающей про-
мышленности Республики Казахстана. Проведено комплексное исследование минералогии, и распределения
редкоземельных минералов, чтобы способствовать обоснованное использование минеральных ресурсов
месторождения. По всей исследуемой территории были собраны около 2000 образцов. Минеральный и эле-
ментный состав руд месторождения определяли методами ICP-MS, рентгено-структурный анализ и рентге-
носпектральный микроанализ. Легкие редкоземельные элементы составляют 46,85% запасов, в то время как
оксиды иттрия, средние и тяжелые лантаноиды занимают 53,15%. Более половины (58,15%) редких земель
сконцентрированы в глинистых минералах. Средняя концентрация редкоземельных минералов в коре вывет-
ривания месторождения составляет 344,3 г/т. Трехмерные и блочных модели были построены для четырех
рудных залежей, установленных на месторождении. В целом, по месторождению на основе блочной модели,
определенной явной закономерности по изменению содержаний суммы оксидов иттрия и редких земель по
горизонтали и по вертикали в пределах месторождения не наблюдается. Тем не менее, по отдельным зале-
жам прослеживается изменение концентраций суммы оксидов иттрия и редких земель. Такие изменения
связаны с литологическими особенностями строения месторождения, а именно с распространением амфи-
болитов, гнейсов и сланцев.
Ключевые слова: блочная модель, кора выветривания, редкоземельные элементы, месторождение Кун-
дыбай, оксид иттрия, литологические особенности.
ISSN 2224-5278 Серия геологии и технических наук. № 6. 2016
51
Нефть и газ
N E W S
OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN
SERIES OF GEOLOGY AND TECHNICAL SCIENCES
ISSN 2224-5278
Volume 6, Number 420 (2016), 51 – 63
D. K. Azhgaliev
Ltd. The company "Nedra-Engineering", Almaty, Kazakhstan.
E-mail: Dulat.azhgaliev@gmail.com
FORECAST FOR GAS
AND OIL CONTENT OF PALEOZOIC COMPLEX
OF THE USTYURT-BOZASHI REGION AND MANGYSHLAK
Annotation. On the basis of new data and complex study summary for sedimentary basins for 2009–2013, it is
clarified the regional specific of structure and structural plan in regards to foundation and Paleozoic section of
Usturt-Bozashi and Mangyshlak, which is Westside of Turanian plate. In a view of early assumed viewpoints regar-
ding ambiguous identification of Paleozoic deposits in section of pre-Jurassic complex and which caused not highly
valuable estimates for perspectives for oil and gas content in west side of Turanian plate as whole, now the purpose
of the work is justification for Paleozoic deposit as new way of study in this region.
On basis of study for structural and tectonic profile and structural plan inter relation specific in regards to the
surface of foundation and Paleozoic formation, there favorable structural and tectonic and geochemical assumptions
are justified, which show the perspectives of Paleozoic formation for gas and oil content. The structural specific of
main structures of II fold and its adjacent oil and gas content zones are pointed out. Reasons are pointed, which jus-
tify the forecast of perspective Paleozoic zones and regions in a view of increased technical opportunities for seismic
methods of study.
On that basis, it is expected more wide spread and development in the section of pre-Jurassic formation of
Paleozoic deposits. Accordingly, perspective zones of Paleozoic complex in the section Zhetybai-Uzen plateau,
Beke-Bashkuduk and Alambek swell, Sandy-shell zone. From this position, the ways of geological survey works are
clarified stressing on opportunity of more justified identification of perspective local objects in Paleozoic formation.
Keywords: west of Turanian Plate, Paleozoic complex, Usturt-Bozashi, Mangyshlak, foundation, local uplifts,
oil and gas content perspectives, oil and gas deposits, section, geological works, structural plan, fault, trap rock,
tectonic element, basin.
УДК 553.98.041 (574.1)
Д. К. Ажгалиев
ТОО Компания «Недра-Инжиниринг», Алматы, Казахстан
ПРОГНОЗ НЕФТЕГАЗОНОСНОСТИ
ПАЛЕОЗОЙСКОГО КОМПЛЕКСА
УСТЮРТ-БОЗАШИНСКОГО РЕГИОНА И МАНГЫШЛАКА
Аннотация. На основе новых данных и результатов комплексного изучения осадочных бассейнов за
2009–2013 г.г. уточнены региональные особенности строения и структурного плана по фундаменту и палео-
зойской толще Устюрт-Бозаши и Мангышлака, представляющих западную часть Туранской плиты. С учетом
Известия Национальной академии наук Республики Казахстан
52
ранее сложившихся представлений о неоднозначном выделении отложений палеозоя в разрезе доюрского
комплекса и невысокой в связи с этим оценки перспективности на нефть и газ западной части Туранской
плиты в целом, целью работы является обоснование палеозойской толщи в качестве нового направления
исследований в данном регионе.
На основе анализа структурно-тектонического строения и особенностей взаимоотношения структурных
планов по поверхности фундамента и палеозойской толщи обоснованы благоприятные структурно-тектони-
ческие и геохимические предпосылки, указывающие на перспективность палеозойской толщи в нефтегазо-
носном отношении. Выделены характерные особенности строения основных структур II порядка и приурочен-
ных к ним зон нефтегазонакопления. Приведены доводы, обосновывающие прогноз перспективных по палео-
зою зон и районов с учетом возросших технических возможностей сейсмических методов исследований.
На основе этого предполагается более широкое распространение и развитие в разрезе доюрской толщи
отложений палеозоя. Соответственно, выделены перспективные зоны по палеозойскому комплексу в разрезе
Жетыбай-Узеньской ступени, Беке-Башкудукского и Аламбекского вала, Песчаномысско-Ракушечной зоны.
С этих позиций уточнены направления геологоразведочных работ с акцентом на возможности более обосно-
ванного выделения перспективных локальных объектов в палеозойской толще.
Ключевые слова: запад Туранской плиты, палеозойский комплекс, Устюрт-Бозаши, Мангышлак, фун-
дамент, локальные поднятия, перспективы нефтегазоносности, залежи нефти и газа, разрез, геологоразве-
дочные работы, структурный план, разлом, ловушка, тектонический элемент, бассейн.
В соответствии с характеристикой регионального тектонического положения рассматриваемая
территория относится к западной части Туранской плиты. В северной части данной территории
выделены Бозашинское поднятие и Северо-Устюртская система прогибов и поднятий, на юге –
прилегающая часть территории Мангышлака и Прикарабогазья [1].
По результатам проекта «Комплексное изучение осадочных бассейнов Республики Казах-
стан», выполненного по инициативе АО НК «КазМунайГаз» и Комитета геологии и недропользо-
вания МИиР РК (Акчулаков У.А., Карабалин У.С., Исказиев К.О. и др.; 2009–2013 гг.), уточнены
региональные характеристики и внутреннее строение рассматриваемой территории. Северная ее
Достарыңызбен бөлісу: |