Пән: Алгебра Қысқа мерзімді жоспар №1-сабак



бет2/53
Дата30.11.2022
өлшемі6,17 Mb.
#53754
1   2   3   4   5   6   7   8   9   ...   53
Байланысты:
11сын алг 1 токсан

Сабақ кезеңі/Уақыты

Оқулықпен жұмыс.

Оқушының іс-әрекеті

Бағалау

Ресурстар

Сабақтың басы



Ұйымдастыру сәті Үй жұмысын тексеру Математикалық логикалық есептер беру арқылы «Миға шабуыл

Қайталау сұрақтары



Мұғалім ұйымдастыру кезеңінде белсенділік танытқан оқушыларды «Мадақтау сөз» әдісіарқылы бағалайды: «Жарайсың! Жақсы! Өте жақсы! Талпын!»

Түрлі түсті қима қағаздар


Сабақтың ортасы


Функция үш тәсілмен берілуі мүмкін: аналитикалық; графиктік; кестелік; 1)Егер функция аналитикалық тәсілмен берілсе, онда тәуелді айнымалы(функция) мен тәуелсіз айнымалының (аргументтің) арасындағы тәуелділік формулалар арқылы өрнектеледі. Мысалы, ; т.с.с.
Егер функцяның графигі салынып көрсетілген болса, онда бұл функцяны графиктік тәсілмен берілген деп есептейміз.Функияның графиктік тәсілмен берілуін көрнекілік үшін немесе фукцияны аналитикалық жолмен анықтау мүмкін емес жағдайларды қолданады.
f(x) функциясы белгілі бір мән қабылдайтын тәуелсіз айнымалының нақты мәндер жиынын функцияның анықталу облысы D(f(x)), ал анықталу облысынан алынған әрбір тәуелсіз айнымалыға сәйкес табылған функцияның мәндерін оның мәндер жиыны E(f(x)) деп атайды.
Демек,Х жиыны функцияның анықталу облысы, Y жиыны функцияның мәндер жиныны болады.
Функцияның жоғарыда берілген анықтамасынан сәйкес төмендегі үш жағдайды анықтай білу керек:
1) функияның D(f) анықталу облысын;
2) х пен у мәндері арасындағы ереже немесе заңдылықты;
3) функцияның Е(f) мәндер жиынын. Осыған мысалдар келтірейік.



1 – мысал. а) ; ә) б)
Шешуі: а) функциясы көпмүше болғандықтан, аргументтің кез келген мәнінде анықталған. Демек, функцияның анықталу облысы барлық нақты сандар жиыны, яғни D(y) = R;
ә) функциясы бөлшек рационал, сондықтан оның бөлімі ≠0 болуы шарт немесе х≠±3 мәндерінде функция анықталмаған. Сондықтан берілген функцияның анықталу облысы -3; 3 сандарынан басқа барлық нақты сандар немесе D(f)=(-∞;-3)∩(3;+∞);
б) функциясының анықталу облысын табу үшін түбір астындағы өрнекті теріс емес деп аламыз, яғни 2х-1≥0 немес х≥0,5. Осыдан D(f)=[0,5;+∞).
Жауабы: а) R; (-∞;-3)∩(3;+∞); [0,5;+∞).





Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   53




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет