екі айнымалының функциясы берілсін. Х және у аргументтері сәйкес өсімшелерін алсын. Сонда функциясы толық өсімшесін алады, ол формуласымен өрнектеледі. Яғни (*).
Анықтама.Өсімшенің -ке қарағанда сызықтық бөлігін құрайтын қосылғыштары өсімшенің толық дифференциалы деп аталады. да dz немесе df деп белгіленеді. болады. Сонда (*) теңдік былай жазылады. . Осыдан деген жуық теңдік аламыз. Тәуелсіз айнымалылар өсімшесі -ті тәелсіз айнымалының дифференциалы деп атаймыз да dx және dy пен белгілейміз. Сонда болады. n>2 болғанда осыған ұқсас болады.