Два игрока бросают монету по два раза каждый. Выигравшим считается тот, кто получит больше гербов. Найти вероятность того, что выигрывает первый игрок.
Из отрезка [0, 2] наудачу выбраны два числа х и у. Найдите вероятность того, что эти числа удовлетворяют неравенствам .
Студент знает 20 из 25 вопросов программы. Найти вероятность того, что студент знает предложенные ему экзаменатором три вопроса.
В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрываются 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?
В кармане имеются 10 монет по 20 к., 5 монет по 15 к. и 2 монеты по 10 к. Наудачу берется 6 монет. Какова вероятность того, что в сумме они составят не более одного рубля.
Из ящика, где 12 деталей 1 категории и 20 деталей второй категории, наудачу без возвращения извлекли 2 детали. Найти вероятность того, что вторая деталь 1 категории.
Из ящика, где 12 деталей 1 категории и 20 деталей второй категории, наудачу без возвращения извлекли 2 детали. Найти вероятность того, что вторая деталь 1 категории. На сборку поступают детали с трех автоматов. Известно, что первый автомат дает 0,3 брака, второй – 0,2, третий – 0,4. Найти вероятность попадания на сборку бракованной детали, если с первого автомата поступило 1000 деталей, со второго – 2000, с третьего – 2500.
Вся продукция проверяется двумя контролерами. Вероятность того, что изделие попадет на проверку к первому контролеру, равна, 0,35, а ко второму – 0,65. Вероятность пропустить нестандартные изделия для первого контролера равна 0,03, для второго – 0,01. Взятое наудачу изделие с маркой «стандарт» оказалось бракованным. Какова вероятность, что изделие проверялось первым контролером?
Вероятность того, что пассажир опоздает к поезду, равна 0,01. Найти наиболее вероятное число опоздавших из 500 пассажиров.
Оценить вероятность того, что появление герба в 500 испытаниях будет не менее 200 и не более 300 раз.
Вероятность появления события в каждом из 400 испытаний равна 0,2. Найти вероятность того, что отклонение относительной частоты появления события от его вероятности по абсолютной величине не превзойдет 0,05.
Определить вероятность разрыва цепи, если Pi – надежность i – го элемента