8.2.2 - анықтама. Егер болса, онда А операторы X кеңістігінде барлық жерде тығыз орналасқан жиында анықталған оператор деп аталады.
D(A)=X болсын.
8.2.3 - анықтама. Егер де
8.2.3 - анықтама. Егер де
яғни
болса, А операторын нүктесінде үзіліссіз оператор деп атайды, және деп белгілейді.
8.2.1 - теорема. Егер D(A) = X кеңістігін М жиынына бейнелейтін сызықты Аоператоры X кеңістігінің , - нөлдік нүктесінде үзіліссіз болса, онда А операторы Xкеңістігінің кез келген нүктесінде үзіліссіз болады.
8.2.4 - анықтама. Егер сызықты А операторы О нүктесінде үзіліссіз болса, ондаоны үзіліссіз оператор деп атайды.
8.2.4 - анықтама. Егер сызықты А операторы О нүктесінде үзіліссіз болса, ондаоны үзіліссіз оператор деп атайды.
8.2.5 - анықтама. Егер А: Х – Y операторы шенелген жиынды шенелген жиынғабейнелейтін болса, онда оны шенелген оператор деп атайды, 8.2.2 - теорема (шенелгенділік қағидасы). Сызықты A: Х-У операторы
шенелген болуы үшін
теңсіздігінің орындалуы қажетті және жеткілікті.
8.2.3теорема (Үзіліссіз оператормен шенелген оператордыңарасындағы байланысты беретін теорема). D(A) =X кеңістігін М жиынынабейнелейтін А операторы үзіліссіз болуы үшін оның шенелген болуы қажетті және жеткілікті.
8.2.3теорема (Үзіліссіз оператормен шенелген оператордыңарасындағы байланысты беретін теорема). D(A) =X кеңістігін М жиынынабейнелейтін А операторы үзіліссіз болуы үшін оның шенелген болуы қажетті және жеткілікті.
Дәлелдеуі. Қажеттілігі. А операторы шенелген оператор болсын. Онда
Демек, сызықты А операторы нүктесінде үзіліссіз. Онда 8.2.4 – анықтама бойынша А операторы X кеңістігінде де үзіліссіз.
Сызықты шенелген операторлар мен функционалдарға мысалдар