3.2.2. Методы явные и неявные
Процесс формирования математической модели для численного интегрирования обязательно включает этап алгебраизации, который состоит в преобразовании обыкновенных дифференциальных уравнений в алгебраические. Он основан на использовании одного из методов численного интегрирования.
Если задано дифференциальное уравнение
(3.1)
и начальные условия , то очередное значение может быть получено интегрированием (3.1):
(3.2)
Определенный интеграл в (3.2) численно равен площади под кривой на интервале (рис. 3.2).
Приближенно эта площадь может быть вычислена как площадь прямоугольника, высота которого равна значению функции на левой границе интервала или значению на правой границе интервала. Очевидно, площади обоих прямоугольников, ограниченных сверху отрезками 1 и 2 на рис. 3.3, будут тем ближе к точному значению интеграла, чем меньше шаг интегрирования .
Рис. 3.3
Подставив в (3.2) приближенные значения интеграла, можно получить две формулы:
(3.3)
. (3.4)
Выражение (3.3) представляет собой формулу явного метода Эйлера. Называется метод явным потому, что неизвестное значение может быть непосредственно вычислено по известному значению в предыдущей точке.
Формула (3.4) соответствует неявному методу Эйлера. Здесь в правой части выражения используется неизвестное значение , поэтому вычислить его непосредственно по этой формуле нельзя.
Более точное значение интеграла (3.2) дает метод трапеций, которому соответствует отрезок 3 на рис. 3.3. Тогда
. (3.5)
Эта формула относится, очевидно, тоже к неявным.
Для явных методов процедура формирования модели для численного интегрирования ограничивается алгебраизацией исходных дифференциальных уравнений. В частности, формула (3.3) не требует дальнейших преобразований и готова для применения.
Для неявных методов дальнейшие действия зависят от того, какой метод решения системы нелинейных уравнений реализован в данном пакете. Одним из вариантов может быть использование итерационного метода Ньютона, который, как известно, обладает наибольшей скоростью сходимости среди практически применяемых методов, и в котором многократно решается система линеаризованных алгебраических уравнений.
В этом случае реализуется второй этап подготовки математических моделей для неявных методов, который состоит в линеаризации нелинейных алгебраических уравнений, т.е. в разложении нелинейных функций в ряд Тэйлора и сохранении в результате только линейных членов.
Пусть задано нелинейное алгебраическое уравнение
(3.6)
где – вектор переменных.
Разложение (3.6) в ряд Тэйлора с сохранением только линейных членов дает приближенную замену
(3.7)
где – начальное приближение, в качестве которого берутся значения переменных на предыдущем шаге интегрирования;
– неизвестное значение переменной на шаге интегрирования.
Выражение (3.7) может быть записано как линейное алгебраическое уравнение
, (3.8)
где – вычисляется для известных значений переменных на предыдущем шаге интегрирования;
Таким образом, процесс численного моделирования в общем случае нелинейных систем неявными методами состоит в формировании и решении на каждом шаге интегрирования системы линейных алгебраических уравнений
, (3.9)
которая включает компонентные и топологические уравнения моделируемой схемы. При этом, процедурам алгебраизации и линеаризации подвергаются только компонентные уравнения, так как топологические уравнения всегда линейные алгебраические.
Рассмотрим пример связанный с подготовкой модели для численного решения нелинейного дифференциального уравнения второго порядка
Первым шагом является сведение данного уравнения к задаче Коши, т.е. к системе уравнений первого порядка за счет введения новой переменной :
Явные формулы метода Эйлера имеют вид
Неявные формулы запишутся следующим образом:
Для перехода к матричной записи выполним ряд преобразований:
Здесь ,
Матричная запись имеет вид
.
Формулу (3.7), вообще говоря, необходимо применять итерационно. Решение этого уравнения, найденное для заданного начального приближения , следует использовать в качестве очередного приближения в (3.7) и повторять формирование и решение линейного алгебраического уравнения до тех пор, пока два последовательных приближения не станут близкими с заданной точностью. При численном моделировании можно ограничиться только одной итерацией, выбирая достаточно малый шаг интегрирования и учитывая, что при этом значения переменных на предыдущем шаге являются достаточно хорошим приближением.
3.2.3. Выбор между явными и неявными методами
в процедурах моделирования технических систем
Выбор между явными и неявными методами представляет серьезную проблему. Многие специалисты считают неявные методы более мощным и универсальным инструментом для решения задач моделирования технических систем [23, 15]. Следует, однако, заметить, что лишь недавно появились достаточно мощные и универсальные системы автоматизированного моделирования, такие, как, например, MATLAB или МВТУ [17], допускающие выбор явного или неявного метода решения задачи. Раньше использовались либо явные, либо неявные методы, так как это требовало разных компонентных моделей.
В современных перспективных системах автоматизированного моделирования, пригодных для моделирования технических систем, применяются, как правило, неявные методы численного интегрирования. Неявные методы лучше приспособлены для решения систем дифференциальных и алгебраических уравнений, к тому же они более устойчивы. В результате, несмотря на большие затраты машинного времени на каждом шаге интегрирования, связанные с необходимостью решения СЛАУ, общие затраты могут быть значительно меньше за счет увеличения шага интегрирования и уменьшения общего количества шагов.
Рассмотрим эту особенность неявных методов на примере явного и неявного методов Эйлера [21], определяемых формулами (3.3) и (3.4), соответственно.
Применим указанные формулы для численного интегрирования простейшего линейного дифференциального уравнения
.
Характеристическое уравнение данной динамической системы имеет вид
, или ,
где – постоянная времени системы.
Единственный полюс системы находится в левой полуплоскости, следовательно, исходная система устойчива. Соответственно, любое решение уравнения, при , стремится к нулю.
Разностное уравнение, соответствующее численному решению явным методом Эйлера, запишется как
.
Известно, что условием устойчивости полученного разностного уравнения является
или .
Это означает, что выбор может качественно изменить вид решения, превратив устойчивый процесс в неустойчивый.
Таким образом, на шаг интегрирования наложено очевидное ограничение – он не может быть больше постоянной времени системы, иначе дискретная аппроксимация станет неустойчивой. Если система имеет несколько постоянных времени, то подобное ограничение связывает шаг интегрирования с самой маленькой постоянной времени.
Переход к методам более высокого порядка мало меняет картину. Для метода Рунге – Кутты 4-го порядка требование устойчивости ограничивает шаг величиной , или, в более общем виде, , где – максимальное собственное значение матрицы Якоби [29].
Применение неявного метода Эйлера к той же системе дает
,
где ограничение на величину шага выглядит по-другому:
,
что позволяет выбрать шаг любой величины, ориентируясь только на требуемый уровень погрешности.
Достарыңызбен бөлісу: |