Реферат по математическому анализу студент мгту им. Баумана группа Э2 -11 Тимофеев Дмитрий Москва 2004. Введение Для более полного представления о кривизне плоской кривой для начала введём понятие векторной функции скалярного аргумента



бет6/6
Дата20.11.2022
өлшемі275,41 Kb.
#51353
түріРеферат
1   2   3   4   5   6
Заключение
В качестве заключения рассмотрим применение эвольвенты в технике.
В технике эвольвенту окружности применяют для профилирования зубчатых зацеплений. Пусть боковые поверхности зубьев двух цилиндрических зубчатых колёс с параллельными осями вращения, проходящими через точки O1 и O2 (рис. б), очерчены по эвольвентам, а линия контакта зубьев при некотором взаимном положении колёс проходит через точку К. Тогда в точке К нормали КМ1 и КМ2 к эвольвентам Э1 и Э2 будут лежать на отрезке М1М2 общей касательной к окружностям радиусов R1 и R2 соответственно (эти окружности по отношению к эвольвентам являются эволютами). При вращении колёс точка К перемещается вдоль отрезка М1М2 (новое положение эвольвент показано на (рис. б) штриховыми линиями) до тех пор, пока рассматриваемая пара зубьев не выйдет из взаимного зацепления. Однако зубчатую передачу профилируют так, что к этому времени возникает зацепление между другой парой зубьев, и линия их контакта снова перемещается вдоль отрезка М1М2.
Если угловая скорость 2 ведущего колеса постоянна, то постоянна и скорость 2R2 движения точки К по линии, называемой линией зацепления. Но тогда постоянна и угловая скорость 1 =2R2/R1 ведомого колеса. Таким образом, эвольвентное зацеплние обеспечивает плавность вращения ведомого колеса и постоянство передаточного отношения 1/2 = R2/R1 зубчатой передачи. Кроме того, некоторые изменения межосевого расстояния O1O2, вызванные неизбежными погрешностями при установке зубчатых колёс не влияют на передаточное отношение, если эти погрешности, конечно, не столь велики, что зубья колёс вообще не могут войти в зацепление.
Эвольвентное зацепление предложено математиком Л. Эилером.
Примеры
1. Найдём кривизну параболы y = x2 в любой её точке.
Имеем: и . Поэтому ; в частности кривизна параболы в её вершине равна 2.
2. Найдём кривизну прямой y = ax + b в её произвольной точке.
По формуле вычисления кривизны получаем результат К=0, означающий, что прямая представляет собой «линию нулевой кривизны».
3. Найдём уравнения эволюты параболы y = x2 .
Найдём значения X и Y: ,
Исключив параметр x, найдём уравнение эволюты в явном виде:

4. Определим кривизну циклоиды в её произвольной точке.

Подставив полученные выражения в формулу , получим:
.
5. Найдём уравнение эволюты эллипса, заданного параметрическими уравнениями
Вычислим производные от x и y по t:
Подставим данные значения в формулы и :

Аналогично получаем значение : .
Исключая параметр t, получаем уравнение эволюты эллипса с текущими координатами  и  в виде .
Список литературы
Н. С. Пискунов, Дифференциальное и интегральное исчисления, т. 1, «Наука», 1985.
А. Ф. Бермант, И. Г. Араманович, Краткий курс математического анализа, «Наука», 1966.
Е. Е. Иванова, Дифференциальное исчисление функций одного переменного, Издательство МГТУ им. Баумана, 1999.
В. А. Ильин, Э. Г. Позняк, Основы математического анализа, ч. 1, «Наука», 1982.
Б. П. Демидович, Задачи и упражнения по математическому анализу, «Интеграл – пресс», 1997.

Достарыңызбен бөлісу:
1   2   3   4   5   6




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет