X и Y – независимы. D(X) = 5, D(Y) = 2. Используя свойства дисперсии, найдите D(2X+3Y).
Изделия испытывают при перегрузочных режимах. Вероятности для каждого изделия пройти испытание равны 0,8 и независимы. Испытания заканчиваются после первого же изделия, после первого же изделия, не выдержавшего испытания. Найти распределение числа испытаний.
Игральный кубик брошен один раз. Найти закон распределения случайной величины Х – числа выпавших очков. Найти , , , функцию распределения. Построить график .
В урне 3 белых и 2 черных шара. Наудачу достают шары по одному без возвращения, до тех пор, пока не появится белый шар. Дискретная случайная величина Х – число испытаний, проведенных при этом. Составить таблицу распределения Х, найти , и .
Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0,8. Найти математическое ожидание и дисперсию случайной величины Х. Найти и построить график Вероятность попадания в мишень для данного стрелка при одном выстреле равна 0,7. Составить закон распределения случайной величины Х – числа попаданий при трех выстрелах. Найти , , , .
В лотерее 100 билетов. Разыгрывается 8 вещей по 5 р., 4 вещи по 10 р. и одна по 20 р. Составить закон распределения суммы выигрыша для владельца лотерейного билета. Найти , , функцию распределения. Нарисовать ее график.
В ящике 3 белых шара и 6 черных. Шары достают до тех пор, пока не появится белый шар. Составить закон распределения дискретной случайной величины Х – числа испытаний. Найти , , и .