Сборник предназначен студентам, интернам, резидентам, магистрантам


Figure 1 Machine Learning Algorithm Schema  Source



Pdf көрінісі
бет97/333
Дата18.11.2023
өлшемі4,77 Mb.
#124365
түріСборник
1   ...   93   94   95   96   97   98   99   100   ...   333
Байланысты:
sbornikkonferenczii19iyunya2023

Figure 1
Machine Learning Algorithm Schema 
Source:
 Sanchez-Martinez S, Camara O, Piella G, Cikes M, González-Ballester 
MÁ, Miron M, Vellido A, Gómez E, Fraser AG and Bijnens B (2022) Machine 
Learning for Clinical Decision-Making: Challenges and Opportunities in 
Cardiovascular 
Imaging.Front. 
Cardiovasc. 
Med.8:765693. 
doi: 
10.3389/fcvm.2021.765693
The future is here 
Machine Learning (ML) is being utilized across various domains in healthcare 
to improve patient care, enhance efficiency, and advance medical research. Here are 
three main domains where ML is prominently used: 
1.
Medical Imaging and Diagnostics: ML algorithms are employed to 
analyze medical images such as X-rays, MRI scans, CT scans, and mammograms. 
These algorithms can assist in the detection and diagnosis of various conditions, 
including tumors, lesions, and abnormalities. ML models can learn from vast image 
datasets to identify patterns and markers that may be indicative of specific diseases, 
enabling earlier detection and more accurate interpretation of medical images. 
2.
Predictive Analytics and Risk Stratification: ML is employed to 
develop predictive models that assess the risk of certain medical events or 
conditions. By analyzing large datasets containing patient information, ML 
algorithms can identify risk factors, predict disease progression, and estimate the 
likelihood of future health outcomes. This information can aid in personalized 
treatment planning, preventive interventions, and proactive patient management. 
3.
Electronic Health Records (EHR) and Clinical Decision Support: ML 
algorithms are applied to analyze electronic health records, which contain 
comprehensive patient information such as medical history, laboratory results
medication records, and demographics. ML models can identify patterns and trends 
within these records to provide decision support to healthcare professionals. This 
can include suggesting appropriate treatments, predicting adverse events, optimizing 
medication management, and alerting to potential drug interactions or patient risks 
(Fig. 2)

These are just a few examples of how ML is utilized in healthcare. ML is a 
rapidly evolving field, and its applications continue to expand into other domains 
such as genomics, precision medicine, wearable devices, and telemedicine. The 
integration of ML technologies has the potential to transform healthcare by enabling 


104 
more accurate diagnoses, personalized treatment plans, and improved patient 
outcomes. 


Достарыңызбен бөлісу:
1   ...   93   94   95   96   97   98   99   100   ...   333




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет