5
O
12
(M
II
— Mg, Ca, Sr)
New ferrites LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr) were obtained by high-temperature synthesis on ceramic tech-
nology. By powder X-ray diffraction established that compounds crystallize in the tetragonal singonia, the pa-
rameters of its crystal lattices are determined. The heat capacity of ferrites has been defined by dynamic calo-
rimetric method at 298.15–673 K and detected the presence of phase transitions of type II. The equations de-
scribing the dependence in the range 298.15–673 K are derived taking into account the phase transitions.
Key words: heat capacity, temperature dependence of the heat capacity, phase transitions, ferrites, perovskite.
Introduction
Oxides of variable valence metals with the perovskite structure are a class of materials that exhibit a
number of interesting and important effects for practical applications: metal-insulator transitions, magnetic
ordering of different nature (ferromagnetism and antiferromagnetism), superconductivity. Therefore, they are
of interest among scientists around the world, carrying out the theoretical researches aimed to understanding
the nature of these physical effects, and applied studies in the field of technology of perovskite oxides. It is
possible to create variety of devices based on them due to the electronic properties of oxides. This direction
of study has been called oxide electronics [1].
The aim of this work is calorimetric study of ferrites’ heat capacity LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr) in
the range of temperature 298.15–673 K. New ferrites synthesized by solid-phase reaction at high temperature
at presence of oxides La
2
O
3
, Fe
2
O
3
, magnesium carbonate, calcium and strontium.
There were established by the method of radiography that ferrites crystallize in the dimetric system with
the next lattice parameters: LaMg
II
3
Fe
5
O
12
; a = 11,105 Å; с = 17,1 Å; V
o
= 2109,3 Å
3
; 263,66 Å
3
; 8;
roentgen
= 4,3 g/cm
3
;
picn
= 4,45 ± 0,09 g/cm
3
, LaCa
II
3
Fe
5
O
12
; a = 11,005 Å; с = 16,91 Å; 2047,89 Å
3
;
255,99 Å
3
; 8;
roentgen
= 4,74 g/cm
3
;
picn
= 4,82 ± 0,04 g/cm
3
, LaSr
II
3
Fe
5
O
12
; a = 11,1 Å; с = 16,98 Å;
2076,57 Å
3
; 259,57 Å
3
; 8;
roentgen
= 5,58 g/cm
3
;
picn
= 5,61 ± 0,07 g/cm
3
.
Experimental part
Isobaric heat capacity of ferrites was investigated in the temperature range 298.15–673 K on ITS-400
calorimeter. Duration of the measurements over the all temperature range with the processing of the experi-
mental data was not more than 2.5 hours. Maximum permissible error of the instrument on passport data was
±10.0 %. Calibration of the device was carried out by determining the thermal conductivity of К
Т
heat meter
[2, 3]. Several experiments carried out with a copper pattern and an empty ampoule for this purpose. Lag
time to achieve the desired temperature was recorded using microvoltampermeter F136 and digital stopwatch
with a step of 25 K. The heat capacities of samples were also measured at 25 K. At each temperature five
parallel experiments were carried out, the results were averaged due to method [4], then were calculated ran-
dom components of error (Δ) for C
p(sp)
(specific) and С
p
(mol) of the specific heats values.
By method of powder radiography there were established that compounds crystallize in the dimetric
system, the parameters of their crystal lattices are determined. By method of dynamic calorimeter at 298.15–
673 K the heat capacity of ferrites has been defined, wherein the presence of phase transitions of type II re-
vealed. The equations describing the dependence at 298.15–673 K temperature were derived taking into ac-
count the phase transitions. There are results of the calorimetric studies in Table 1 below.
E.S.Musstafin, R.Z.Kasenov et al.
22
Вестник Карагандинского университета
T a b l e 1
The experimental values of the heat capacity of compounds LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr)
T
, K
C
p
C
p
T
, K
C
p
C
p
LaMg
3
Fe
5
O
12
298 0,73±0,01 495,69±4,88 498 0,60±0,03 411,09±21,60
323 0,94±0,06 645,37±38,26 523 0,58±0,04 396,44±25,64
348 0,87±0,05 594,43±36,85 548 0,51±0,03 350,16±17,72
373 0,79±0,05 539,65±34,37 573 0,42±0,02 288,60±14,71
398 0,69±0,14 471,78±96,09 598 0,35±0,02 242,05±14,09
423 0,61±0,04 419,21±24,19 623 0,34±0,03 234,12±17,80
448 0,54±0,03 368,02±21,88 648 0,35±0,02 240,96±14,51
473 0,55±0,03 376,73±20,75 673 0,40±0,03 271,60±17,38
LaCa
3
Fe
5
O
12
298 0,39±0,30 285,62±218,95 498 0,56±0,06 407,69±45,08
323 0,87±0,05 636,52±34,21 523 0,60±0,04 439,24±30,84
348 0,82±0,13 596,31±94,01 548 0,70±0,05 510,10±38,83
373 0,73±0,30 534,79±220,48 573 0,53±0,05 387,46±34,97
398 0,66±0,03 479,87±21,46 598 0,37±0,03 270,55±21,97
423 0,57±0,03 416,94±25,18 623 0,28±0,05 207,94±35,37
448 0,53±0,65 385,18±473,80 648 0,24±0,30 178,86±220,92
473 0,49±0,04 359,00±30,53 673 0,22±0,02 158,54±12,55
LaSr
3
Fe
5
O
12
298 0,70±0,00 610,86±3,04 498 0,51±0,02 444,51±17,17
323 0,88±0,05 769,09±47,92 523 0,47±0,02 409,61±18,10
348 0,83±0,05 724,18±45,57 548 0,42±0,12 370,43±103,96
373 0,70±0,04 613,67±31,84 573 0,38±0,02 330,44±13,55
398 0,61±0,03 535,80±22,22 598 0,35±0,02 304,52±13,18
423 0,55±0,04 480,56±33,48 623 0,35±0,02 304,89±17,56
448 0,49±0,03 426,17±25,00 648 0,37±0,16 322,95±143,05
473 0,43±0,03 375,97±24,30 673 0,40±0,18 350,93±159,62
Results and discussion
The equation of temperatures dependence of the heat capacity is derived (Table 2). The dependence
heat capacity on temperature is depicted taking into account the experimental data on C
p
°(T) (Fig. 1–3).
T a b l e 2
Equations of the temperature dependence of the specific heats of ferrites LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr)
Compounds
Coefficients of the equation
C
0
p
=
a
+
b
T
+
c
T
–2
, J/(mol·К)
T
, K
a b
c
10
–5
LaMg
3
Fe
5
O
12
–1500,24 6,45 64,0877
298,15–323,0
1059,98 –1,70 140,6381
323,0–448,0
–4617,36 7,34 3407,81
448,0–498,0
7062,98 –8,89 –5517,27 498,0–573,0
–6783,18 7,49 9136,514
573,0–673,0
LaCa
3
Fe
5
O
12
–3262,26 12,70 –212,122
298,15–323,0
718,25 –1,00 250,4178
323,0–473,0
–933,34 2,46 291,1446
473,0–548,0
–7580,43 7,67
11675,89
548,0–673,0
LaSr
3
Fe
5
O
12
17089,38 –33,06 –5886,57 298,15–348
46,12 –0,13 876,2147
348,0–473
20615,07 –26,82 –16894,6 473,0–523,0
–4252,29 5,01 5590,562
523,0–673,0
Серия «Химия». № 3(75)/2014
Figure 1. Dependence of the he
LaCa
3
Fe
5
O
12
on tempera
Figure 3. Depe
Data from Table 1 shows that t
racy of the calorimeter. It is found o
the heat capacity C
p
°~ƒ(T). This fac
transitions may be caused by cation
advent of the Curie and Neel [5], etc
It is known that in compounds
anomaly connected with the Schottk
Since the possibilities of calori
ied ferrites directly from the experim
increments [6]. Also coefficients o
ble 2):
Ф
Thermod
eat capacity
ature
Figure 2. Dependence of
LaMg
3
Fe
5
O
12
on t
endence of the heat capacity LaSr
3
Fe
5
O
12
on temperatu
the error of measurement of the heat capacity fit w
out that a number of ferrites has a sharp jumps in
ct occurs probably due to the presence of phase t
nic redistributions, changes of the coefficients of
c.
containing paramagnetic transition metal ions, o
ky effect.
imeter IT-400 do not allow to calculate the stand
mental data on C
p
°(T), it was estimated using th
f the temperature dependence of the heat capac
H
0
(T) – H
0
(298.15) =
0
298.15
T
p
C dT
;
S
0
(T) = S
0
(298.17) +
298.15
T
p
C
dT
T
;
Ф
хх
(Т) = S
0
(T) –
0
0
( )
(298.15)
H T
H
T
.
dynamic study of ferrites …
23
f the heat capacity
temperature
ure
within permissible accu-
the dependence curve of
transitions type-II. These
f thermal expansion, the
often occur heat capacity
dard entropy of the stud-
e method of ion entropy
city are determined (Ta-
(1)
(2)
(3)
E.S.Musstafin, R.Z.Kasenov et al.
24
Вестник Карагандинского университета
In continuation of our studies there were calculated temperature dependence of thermodynamic func-
tions (S°(T), H°(T) – H°(298,15)) using the ratios 1, 2, 3 and the experimental data of C
p
°~ƒ(T) was applied.
S°( T), H°( T) – H°(298,15) and Ф
хх
(T) ferrites (Table 3).
T a b l e 3
Thermodynamic functions LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr). (С
0
р
(Т), S
0
(T), Ф
хх
(Т), Н
0
(Т) – Н
0
(298,15)
Т
, К
С
0
р
(
Т
)
S
0
(
T
)
Ф
хх
(
Т
)
Н
0
(
Т
) –
Н
0
(298,15)
LaMg
3
Fe
5
O
12
298
495,7±4,9
365,3 ± 11
365,3 ± 11
–
323
645,4±38,3
410,9 ± 41
367,0 ± 37
14172,4 ± 891
348
594,4±36,9
456,7 ± 46
371,8 ± 37
29533,0 ± 1858
373
539,7±34,4
495,2 ± 50
378,9 ± 38
43411,2 ± 2731
398
471,8±96,1
527,6 ± 53
387,2 ± 39
55886,0 ± 3515
423
419,2±24,2
554,8 ± 55
396,3 ± 40
67017,8 ± 4215
448
368,0±21,9
577,4 ± 58
405,8 ± 41
76853,3 ± 4834
473
376,7±20,7
597,5 ± 60
415,4 ± 42
86103,4 ± 5416
498
411,1±21,6
617,7 ± 62
425,1 ± 43
95903,2 ± 6032
523
396,4±25,6
637,6 ± 64
434,8 ± 43
106060,9 ± 6671
548
350,2±17,7
655,2 ± 66
444,4 ± 44
115494,2 ± 7265
573
288,6±14,7
669,6 ± 67
454,0 ± 45
123570,8 ± 7773
598
242,1±14,1
681,0 ± 68
463,2 ± 46
130216,6 ± 8191
623
234,1±17,80
690,8 ± 69
472,2 ± 47
136190,7 ± 8566
648
240,9±14,5
700,1 ± 70
480,8 ± 48
142112,4 ± 8939
673
271,6±17,4
709,8 ± 71
489,1 ± 49
148508,9 ± 9341
LaCa
3
Fe
5
O
12
298,15
285,62±21,9
411,9 ± 12
411,8 ± 12
–
323
636,52±34,2
448,7 ± 45
413,1 ± 41
11517,8 ± 724
348
596,31±94,0
494,0 ± 49
417,3 ± 42
26688,4 ± 1679
373
534,79±22,5
532,3 ± 53
423,8 ± 42
40489,9 ± 2547
398
479,87±21,5
564,9 ± 56
431,6 ± 43
53062,8 ± 3338
423
416,94±25,2
592,9 ± 59
440,4 ± 44
64514,7 ± 4058
448
385,18±47,8
616,8 ± 62
449,5 ± 45
74928,9 ± 4713
473
359,00±30,5
637,3 ± 64
458,9 ± 46
84371,4 ± 5307
498
407,69±45,1
657,0 ± 66
468,4 ± 47
93950,9 ± 5910
523
439,24±30,8
678,2 ± 68
477,9 ± 48
104770,7 ± 6590
548
510,10±38,8
700,8 ± 70
487,6 ± 49
116871,2 ± 7351
573
387,46±34,9
720,3 ± 72
497,3 ± 50
127779,4 ± 8037
598
270,55±21,9
733,9 ± 73
506,9 ± 51
135708,0 ± 8536
623
207,94±35,4
743,5 ± 74
516,2 ± 52
141592,7 ± 8906
648
178,86±22,9
750,8 ± 75
525,2 ± 53
146224,9 ± 9198
673
158,54±12,6
756,9 ± 76
533,7 ± 53
150278,2 ± 9453
LaSr
3
Fe
5
O
12
298,15
285,6±21,95
444,8 ± 13
444,8 ± 44
–
323
636,5±34,21
501,5 ± 50
446,9 ± 45
17632,9 ± 1109
348
596,3±24,01
558,3 ± 56
452,9 ± 45
36662,8 ± 2306
373
534,8±22,48
605,1 ± 61
461,6 ± 46
53514,1 ± 3366
398
479,9±21,46
643,1 ± 64
471,9 ± 47
68163,7 ± 4287
423
416,9±25,18
674,4 ± 67
482,9 ± 48
80987,5 ± 5094
448
385,2±47,80
700,4 ± 70
494,4 ± 49
92277,6 ± 5804
473
359,0±30,53
722,1 ± 72
505,9 ± 51
102264,0 ± 6432
498
407,7±40,08
743,7 ± 74
517,2 ± 52
112757,9 ± 7092
523
439,2±30,84
765,0 ± 76
528,6 ± 53
123628,9 ± 7776
548
510,1±38,83
782,7 ± 78
539,8 ± 54
133102,5 ± 8372
573
387,5±34,97
797,6 ± 80
550,7 ± 55
141449,3 ± 8897
598
270,6±21,97
810,8 ± 81
561,3 ± 56
149203,2 ± 9385
623
207,9±35,37
823,3 ± 82
571,6 ± 57
156812,2 ± 9863
648
178,9±22,92
835,6 ± 84
581,5 ± 58
164655,1 ± 10357
673
158,5±12,55
848,3 ± 85
591,2 ± 59
173054,5 ± 10885
Thermodynamic study of ferrites …
Серия «Химия». № 3(75)/2014
25
Errors of the temperature dependence of the thermodynamic functions were calculated based on an av-
erage error of the heat capacity and entropy calculation accuracy (3 %).
Conclusion
1. Isobaric heat capacity of iron LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr) was measured at temperature
298.15–673 K for the first time.
2. It is revealed a sharp jumps in the heat capacity connected with the presence of phase transitions of
type II.
3. Equations of the temperature dependence of the heat capacity have been calculated taking into ac-
count the temperatures of phase transitions type II.
4. The functions S°(T), H°(T) – H°(298,15) and Ф
хх
(T) were calculated in the certain temperature inter-
val.
References
1 Tretyakov Y.D., Lepis W. Chemistry and technology of solid-state materials. — Moscow: Moscow State University Press,
1985. — P. 256.
2 Platunov E.S., Burawoy S.E., Kurepin V.V., Petrov G.S. Thermophysical measurements and instruments. — Moscow:
Mashinostroenie, 1986. — P. 256.
3 Technical description and operating instructions ITS-400. — Aktobe: Aktobe plant «Etalon», 1986. — P. 48.
4 Spiridonov V.P., Lopatkin L.V. Mathematical processing of experimental data. — Moscow: Moscow State University Press,
1970. — P. 221.
5 Reznitskii L.A. Calorimetry solid. — Moscow: Moscow State University, 1981. — 184 p.
6 Kumok V.N. Problem of matching methods to assess the thermodynamic characteristics // Direct and inverse problems of
chemical thermodynamics. — Novosibirsk: Nauka, 1987. — P. 108–123.
Е.С.Мұстафин, Р.З.Қасенов, А.М.Пудов, С.А.Блялов, А.А.Мұратбекова
LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr) құрамды ферриттердің
термодинамикалық зерттеулері
Мақалада керамикалық технология əдісі бойынша жоғары температуралық синтезбен жаңа ферриттер
алынған LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr). Қосылыстардың тетрагоналды сингония бойынша кристал-
данатыны ұнтақты рентгенография əдісі арқылы дəлелденді, олардың кристалл торларының
параметрлері анықталды. Ферриттердің жылусыйымдылықтары 298,15–673
К температура
аралығында динамикалық калориметрия əдісімен зерттелді жəне бұл жағдайда 2-ші реттік фазалық
ауысу орын алатыны көрсетілді. Фазалық ауысуларды ескере отырып, 298,15–673 К температура
аралығында тəуелділікті сипаттайтын теңдеулер қорытылып шығарылды.
Е.С.Мустафин, Р.З.Касенов, А.М.Пудов, С.А.Блялов, А.А.Муратбекова
Термодинамические исследования ферритов
состава LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr)
В статье высокотемпературным синтезом по керамической технологии получены новые ферриты
LaM
II
3
Fe
5
O
12
(M
II
— Mg, Ca, Sr). Методом порошковой рентгенографии установлено, что соединения
кристаллизуются в тетрагональной сингонии, определены параметры их кристаллических решеток.
Методом динамической калориметрии в интервале 298,15–673 К определены теплоемкости ферритов,
при этом выявлено наличие фазовых переходов II рода. С учетом фазовых переходов выведены урав-
нения, описывающие зависимость, в интервале 298,15–673 К.
26
Вестник Карагандинского университета
UDC 546.06
Sh.K.Amerkhanova
1
, V.D.Alexandrov
2
, А.Yu.Sobolev
2
1
E.A.Buketov Karaganda State University;
2
Donbas National Academy of Civil Engineering and Architecture, Makeyevka, Ukraine
(E-mail: amerkhanova_sh@mail.ru)
Construction of phase diagram in systems Na
Достарыңызбен бөлісу: |