Т еоретическая ф изика Том 11, 2010



Pdf көрінісі
бет11/12
Дата27.12.2016
өлшемі3,26 Mb.
#545
1   ...   4   5   6   7   8   9   10   11   12
p/m
Q
corrections.
The explicit expression for the quark-diquark potential up to the second order in
p/m
Q
is given in Ref. [3].
The calculated values of the ground state and excited baryon masses are given in
Tables 2-5 in comparison with available experimental data. In the first two columns we
put the baryon quantum numbers and the state of the heavy-quark–light-diquark bound
system (in usual notations
nL), while in the rest columns our predictions for the masses
and experimental data are shown.
At present the best experimentally studied quantities are the mass spectra of the
Λ
Q
and
Σ
Q
baryons, which contain the light scalar or axial vector diquarks, respectively.
They are presented in Tables 2, 3. Masses of the ground states are measured both for
charmed and bottom
Λ
Q
and
Σ
Q
baryons. Recently the masses of the ground state
Σ
b
and
Σ

b
baryons were first reported by CDF [16]:
M
Σ
+
b
= 5807.5
+1.9
−2.2
± 1.7 MeV, M
Σ

b
=
5815.2
+1.0
−0.9
± 1.7 MeV, M
Σ
∗+
b
= 5829.0
+1.6
−1.7
± 1.7 MeV, M
Σ
∗−
b
= 5836.7
+2.0
−1.8
± 1.7 MeV.
CDF also significantly improved the precision of the
Λ
b
mass [13]. For charmed baryons
the masses of several excited states are also known. It is important to emphasize that
the
J
P
quantum numbers for most excited heavy baryons have not been determined
experimentally, but are assigned by PDG on the basis of quark model predictions. For
some excited charm baryons such as the
Λ
c
(2765), Λ
c
(2880) and Λ
c
(2940) it is even not

112
D. Ebert, R.N. Faustov, V.O. Galkin
Таблица 2: Masses of the Λ
Q
(Q = c, b) heavy baryons (in MeV).
Q = c
Q = b
I(J
P
)
Qd state
M
M
exp
[1]
M
M
exp
[1]
M
exp
[13]
0(
1
2
+
)
1S
2297
2286,46(14)
5622
5624(9)
5619,7(2,4)
0(
1
2

)
1P
2598
2595,4(6)
5930
0(
3
2

)
1P
2628
2628,1(6)
5947
0(
1
2
+
)
2S
2772
2766,6(2,4)?
6086
0(
3
2
+
)
1D
2874
6189
0(
5
2
+
)
1D
2883
2882,5(2,2)?
6197
0(
1
2

)
2P
3017
6328
0(
3
2

)
2P
3034
6337
known if they are excitations of the
Λ
c
or
Σ
c
.
4
Our calculations show that the
Λ
c
(2765)
can be either the first radial (2
S) excitation of the Λ
c
with
J
P
=
1
2
+
containing the light
scalar diquark or the first orbital excitation (1
P ) of the Σ
c
with
J
P
=
3
2

containing
the light axial vector diquark. The
Λ
c
(2880) baryon in our model is well described by
the second orbital (1
D) excitation of the Λ
c
with
J
P
=
5
2
+
in agreement with the
recent spin assignment [15] based on the analysis of angular distributions in the decays
Λ
c
(2880)
+
→ Σ
c
(2455)
0,++
π
+,−
. Our model suggests that the charmed baryon
Λ
c
(2940),
recently discovered by BaBar[14] and then also confirmed by Belle [15], could be the first
radial (2
S) excitation of the Σ
c
with
J
P
=
3
2
+
which mass is predicted slightly below
the experimental value. If this state proves to be an excited
Λ
c
, for which we have no
candidates around 2940 MeV, then it will indicate that excitations inside the diquark
should be also considered.
5
The
Σ
c
(2800) baryon can be identified in our model with
one of the orbital (1
P ) excitations of the Σ
c
with
J
P
=
1
2

,
3
2

or
5
2

which predicted
mass differences are less than 15 MeV. Thus masses of all these states are compatible
with the experimental values within errors.
Mass spectra of the
Ξ
Q
baryons with the scalar and axial vector light (
qs) diquarks
are given in Tables 4, 5. Experimental data here until recently were available only for
charm-strange baryons. In 2007 the D0 Collaboration [18] reported the discovery of the
Ξ

b
baryon with the mass
M
Ξ
b
= 5774 ± 11 ± 15 MeV. The CDF Collaboration [19]
confirmed this observation and gave the more precise value
M
Ξ
b
= 5792.9±2.5±1.7 MeV.
Our model prediction
M
Ξ
b
= 5812 MeV is in a reasonable agreement with these new data.
In the excited charmed baryon sector we can identify the
Ξ
c
(2790) and Ξ
c
(2815) with
the first orbital (1
P ) excitations of the Ξ
c
with
J
P
=
1
2

and
J
P
=
3
2

, respectively,
containing the light scalar diquark, which is in agreement with the PDG [1] assignment.
Recently Belle [20] reported the first observation of two baryons
Ξ
c
(2980) and Ξ
c
(3077),
which existence was also confirmed by BaBar [21]. The
Ξ
c
(2980) can be interpreted in
our model as the first radial (2
S) excitation of the Ξ
c
with
J
P
=
1
2
+
containing the light
axial vector diquark. On the other hand the
Ξ
c
(3077) corresponds to the second orbital
(1
D) excitation in this system with J
P
=
5
2
+
. Very recently the BaBar Collaboration
[17] announced observation of two new charmed baryons
Ξ
c
(3055) with the mass M =
4
In Tables 2, 3 we mark with ? the states which interpretation is ambiguous.
5
The Λ
c
baryon with the first orbital excitation of the diquark is expected to have a mass in this
region.

Heavy Baryons in the Relativistic Quark Model
113
Таблица 3: Masses of the Σ
Q
(Q = c, b) heavy baryons (in MeV).
Qd
Q = c
Q = b
I(J
P
)
state
M
M
exp
[1]
M
exp
[14]
M
exp
[15]
M
M
exp
[16]
M
exp
[16]
1(
1
2
+
)
1S
2439
2453,76(18)
5805
5807,5(2,6)
5815,2(2,0)
1(
3
2
+
)
1S
2518
2518,0(5)
5834
5829,0(2,4)
5836,7(2,6)
1(
1
2

)
1P
2805
6122
1(
1
2

)
1P
2795
6108
1(
3
2

)
1P
2799
2802(
4
7
)
6106
1(
3
2

)
1P
2761
2766,6(2,4)?
6076
1(
5
2

)
1P
2790
6083
1(
1
2
+
)
2S
2864
2846(13)
6202
1(
3
2
+
)
2S
2912
2939,8(2,3)?
2938(
3
5
)?
6222
1(
1
2
+
)
1D
3014
6300
1(
3
2
+
)
1D
3005
6287
1(
3
2
+
)
1D
3010
6291
1(
5
2
+
)
1D
3001
6279
1(
5
2
+
)
1D
2960
6248
1(
7
2
+
)
1D
3015
6262
3054.2 ± 1.2 ± 0.5 MeV and Ξ
c
(3123) with the mass M = 3122.9 ± 1.3 ± 0.3 MeV. These
states can be interpreted in our model as the second orbital (
1D) excitations of the Ξ
c
with
J
P
=
5
2
+
containing scalar and axial vector diquarks, respectively. Their predicted
masses are 3042 MeV and 3123 MeV.
For the

Q
baryons only masses of the ground-state charmed baryons are known.
The


c
baryon was recently discovered by BaBar [22]. The measured mass difference of
the


c
and

c
baryons of (
70.8 ± 1.0 ± 1.1) MeV is in very good agreement with the
prediction of our model 70 MeV [2].
The detailed comparison of our predictions for the heavy baryon mass spectra with
results of other calculations can be found in Refs. [2, 3].
In order to calculate the exclusive semileptonic decay rate of the heavy baryon, it is
necessary to determine the corresponding matrix element of the weak current between
Таблица 4: Masses of the Ξ
Q
(Q = c, b) heavy baryons with scalar diquark (in MeV).
Q = c
Q = b
I(J
P
)
Qd state
M
M
exp
[1]
M
exp
[17]
M
M
exp
[19]
1
2
(
1
2
+
)
1S
2481
2471,0(4)
5812
5792,9(3,0)
1
2
(
1
2

)
1P
2801
2791,9(3,3)
6119
1
2
(
3
2

)
1P
2820
2818,2(2,1)
6130
1
2
(
1
2
+
)
2S
2923
6264
1
2
(
3
2
+
)
1D
3030
6359
1
2
(
5
2
+
)
1D
3042
3054,2(1,5)
6365
1
2
(
1
2

)
2P
3186
6492
1
2
(
3
2

)
2P
3199
6494

114
D. Ebert, R.N. Faustov, V.O. Galkin
Таблица 5: Masses of the Ξ
Q
(Q = c, b) heavy baryons with axial vector diquark (in MeV).
Q = c
Q = b
I(J
P
)
Qd state
M
M
exp
[1]
M
exp
[20]
M
exp
[21, 17]
M
1
2
(
1
2
+
)
1S
2578
2578,0(2,9)
5937
1
2
(
3
2
+
)
1S
2654
2646,1(1,2)
5963
1
2
(
1
2

)
1P
2934
6249
1
2
(
1
2

)
1P
2928
6238
1
2
(
3
2

)
1P
2931
2931(6)
6237
1
2
(
3
2

)
1P
2900
6212
1
2
(
5
2

)
1P
2921
6218
1
2
(
1
2
+
)
2S
2984
2978,5(4,1)
2967,1(2,9)
6327
1
2
(
3
2
+
)
2S
3035
6341
1
2
(
1
2
+
)
1D
3132
6420
1
2
(
3
2
+
)
1D
3127
6410
1
2
(
3
2
+
)
1D
3131
6412
1
2
(
5
2
+
)
1D
3123
3122,9(1,4)
6403
1
2
(
5
2
+
)
1D
3087
3082,8(3,3)
3076,4(1,0)
6377
1
2
(
7
2
+
)
1D
3136
6390
baryon states. In the quasipotential approach, the matrix element of the weak current
J
W
µ
= ¯
Q γ
µ
(1 − γ
5
)Q, associated with the heavy-to-heavy quark Q → Q (Q = b and
Q = c) transition, between baryon states with masses M
B
Q
,
M
B
Q
and momenta
p
B
Q
,
p
B
Q
has the form
B
Q
(p
B
Q
)|J
W
µ
|B
Q
(p
B
Q
) =
d
3
p d
3
q
(2π)
6
¯
Ψ
B
Q
p
BQ
(p)Γ
µ
(p, q)Ψ
B
Q
p
BQ
(q),
(6)
where
Γ
µ
(p, q) is the two-particle vertex function and Ψ
B p
B
are the baryon (
B =
B
Q
, B
Q
) wave functions projected onto the positive energy states of quarks and boosted
to the moving reference frame with momentum
p
B
.
The wave function of the moving baryon
Ψ
B
Q

is connected with the wave function
in the rest frame (
∆ = 0) Ψ
B
Q
0
≡ Ψ
B
Q
by the transformation
Ψ
B
Q

(p) = D
1/2
Q
(R
W
L

)D
I
d
(R
W
L


B
Q
0
(p),
I = 0, 1,
(7)
where
R
W
is the Wigner rotation,
L

is the Lorentz boost from the baryon rest frame
to a moving one,
D
1/2
(R) and D
I
(R) are rotation matrices of the heavy quark and light
diquark spins, respectively.
The hadronic matrix elements for the semileptonic decay
Λ
Q
→ Λ
Q
are parameterized
in terms of six invariant form factors:
Λ
Q
(v , s )|V
µ

Q
(v, s)
= ¯u
Λ
Q
(v , s ) F
1
(w)γ
µ
+ F
2
(w)v
µ
+ F
3
(w)v
µ
u
Λ
Q
(v, s),
Λ
Q
(v , s )|A
µ

Q
(v, s)
= ¯u
Λ
Q
(v , s ) G
1
(w)γ
µ
+ G
2
(w)v
µ
+ G
3
(w)v
µ
γ
5
u
Λ
Q
(v, s), (8)
where
u
Λ
Q
(v, s) and u
Λ
Q
(v , s ) are Dirac spinors of the initial and final baryon with
four-velocities
v and v , respectively; q = M
Λ
Q
v − M
Λ
Q
v, and w = v · v . In the heavy

Heavy Baryons in the Relativistic Quark Model
115
quark limit
m
Q
→ ∞ (Q = b, c) the form factors (8) can be expressed through the single
Isgur-Wise function
ζ(w) [23]
F
1
(w) = G
1
(w) = ζ(w); F
2
(w) = F
3
(w) = G
2
(w) = G
3
(w) = 0.
(9)
At subleading order of the heavy quark expansion two additional types of contributions
arise [24]. The first one parameterizes
1/m
Q
corrections to the heavy quark effective
theory (HQET) current and is proportional to the product of the parameter ¯
Λ = M
Λ
Q

m
Q
, which is the difference of the baryon and heavy quark masses in the infinitely heavy
quark limit, and the leading order Isgur-Wise function
ζ(w). The second one comes from
the kinetic energy term in
1/m
Q
correction to the HQET Lagrangian and introduces the
additional function
χ(w). Therefore the form factors are given by [24]
F
1
(w) = ζ(w) +
¯
Λ
2m
Q
+
¯
Λ
2m
Q
[2χ(w) + ζ(w)] ,
G
1
(w) = ζ(w) +
¯
Λ
2m
Q
+
¯
Λ
2m
Q
2χ(w) +
w − 1
w + 1
ζ(w) ,
F
2
(w) = G
2
(w) = −
¯
Λ
2m
Q
2
w + 1
ζ(w),
F
3
(w) = −G
3
(w) = −
¯
Λ
2m
Q
2
w + 1
ζ(w).
(10)
In our model we obtain the following expressions for the semileptonic decay
Λ
Q
→ Λ
Q
form factors up to subleading order in
1/m
Q
F
1
(w) = ζ(w) +
¯
Λ
2m
Q
+
¯
Λ
2m
Q
[2χ(w) + ζ(w)]
+4(1 − ε)(1 + κ)
¯
Λ
2m
Q
1
w − 1

¯
Λ
2m
Q
(w + 1) χ(w),
G
1
(w) = ζ(w) +
¯
Λ
2m
Q
+
¯
Λ
2m
Q
2χ(w) +
w − 1
w + 1
ζ(w)
−4(1 − ε)(1 + κ)
¯
Λ
2m
Q
wχ(w),
F
2
(w) = −
¯
Λ
2m
Q
2
w + 1
ζ(w)
−4(1 − ε)(1 + κ)
¯
Λ
2m
Q
1
w − 1
+
¯
Λ
2m
Q
w χ(w),
G
2
(w) = −
¯
Λ
2m
Q
2
w + 1
ζ(w) − 4(1 − ε)(1 + κ)
¯
Λ
2m
Q
1
w − 1
χ(w),
F
3
(w) = −G
3
(w) = −
¯
Λ
2m
Q
2
w + 1
ζ(w) + 4(1 − ε)(1 + κ)
¯
Λ
2m
Q
χ(w),
(11)
where the leading order Isgur-Wise function of heavy baryons
ζ(w) = lim
m
Q
→∞
d
3
p
(2π)
3
Ψ
Λ
Q
p + 2
d
(p)
w − 1
w + 1
e

Ψ
Λ
Q
(p),
(12)
and the subleading function
χ(w) = −
w − 1
w + 1
lim
m
Q
→∞
d
3
p
(2π)
3
Ψ
Λ
Q
p + 2
d
(p)
w − 1
w + 1
e

¯
Λ −
d
(p)

Λ
Ψ
Λ
Q
(p), (13)

116
D. Ebert, R.N. Faustov, V.O. Galkin
here
e

= ∆/


2
is the unit vector in the direction of
∆ = M
Λ
Q
v − M
Λ
Q
v. It is
important to note that in our model the expressions for the Isgur-Wise functions
ζ(w) (12)
and
χ(w) (13) are determined in the whole kinematic range accessible in the semileptonic
decays in terms of the overlap integrals of the heavy baryon wave functions, which are
known from the baryon mass spectrum calculations. Therefore we do not need to make
any assumptions about the baryon wave functions or/and to extrapolate our form factors
from the single kinematic point, as it was done in most of previous calculations.
For
(1 − ε)(1 + κ) = 0 the HQET results (10) are reproduced. This can be achieved
either setting
ε = 1 (pure scalar confinement) or κ = −1. In our model we need a vector
confining contribution and therefore use the latter option. This consideration gives us
an additional justification, based on the HQET, for fixing one of the main parameters
of the model
κ. In the heavy quark limit the wave functions of the initial Ψ
Λ
Q
and final
baryon
Ψ
Λ
Q
coincide, and thus the HQET normalization condition
ζ(1) = 1 is exactly
reproduced. The subleading function
χ(w) vanishes for w = 1. The function χ(w) is very
small in the whole accessible kinematic range, since it is roughly proportional to the ratio
of the heavy baryon binding energy to the baryon mass.
The
Λ
b
→ Λ
c
differential decay rate at zero recoil (
w = 1) [24]:
lim
w→1
1

w
2
− 1
dΓ(Λ
b
→ Λ
c
eν)
dw
= G
2
F
|V
cb
|
2

3
M
3
Λ
c
(M
Λ
b
− M
Λ
c
)
2
|G
1
(1)|
2
(14)
is governed by the square of the axial current form factor
G
1
, which near this point has
the following expansion
G
1
(w) = 1 − ˆρ
2
(w − 1) + ˆc(w − 1)
2
+ · · · ,
(15)
where in our model with the inclusion of the first order heavy quark corrections (11)
ˆ
ρ
2
= 1.51,
and
ˆc = 2.03.
This value of the slope parameter of the
Λ
b
-baryon decay form factor is in agreement
with the recent experimental value obtained by the DELPHI Collaboration [25]
ˆ
ρ
2
= 2.03 ± 0.46
+0.72
−1.00
and lattice QCD [26] estimate
ˆ
ρ
2
= 1.1 ± 1.0.
Our prediction for the branching ratio of the semileptonic decay
Λ
b
→ Λ
c
eν for
|V
cb
| = 0.041 and τ
Λ
b
= 1.23 × 10
−12
s [1]
Br
theor

b
→ Λ
c
lν) = 6.9%
is in agreement with available experimental data
Br
exp

b
→ Λ
c
lν) =
5.0
+1.1
−0.8
+1.6
−1.2
%
DELPHI [23]
8.1 ± 1.2
+1.1
−1.6
± 4.3 % CDF [25]
(16)
and the PDG branching ratio [1]
Br
exp

b
→ Λ
c
lν + anything) = (9.1 ± 2.1)%.
(17)
The comparison of our model predictions with other theoretical calculations [27, 28,
29, 30, 31, 32, 33, 34] is given in Table 6. In nonrelativistic quark models [27, 28, 29]

Heavy Baryons in the Relativistic Quark Model
117
Таблица 6: Comparison of different theoretical predictions for semileptonic decay rates Γ (in
10
10
s
−1
) of bottom baryons.
Decay
this work
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
Λ
b
→ Λ
c

5,64
5,9
5,1
5,14
5,39
6,09
5, 08 ± 1, 3 5,82 5, 4 ± 0, 4
Ξ
b
→ Ξ
c

5,29
7,2
5,3
5,21
5,27
6,42
5, 68 ± 1, 5 4,98
Σ
b
→ Σ
c

1,44
4,3
2,23
1,65
Ξ
b
→ Ξ
c

1,34

b
→ Ω
c

1,29
5,4
2,3
1,52
1,87
1,81
Σ
b
→ Σ

c

3,23
4,56
3,75
Ξ
b
→ Ξ

c

3,09

b
→ Ω

c

3,03
3,41
4,01
4,13
form factors of the heavy baryon decays are evaluated at the single kinematic point of
zero recoil and then different form factor parameterizations (pole, dipole) are used for
decay rate calculations. The relativistic three-quark model [30], Bethe-Salpeter model
[31] and light-front constituent quark model [32] assume Gaussian wave functions for


Достарыңызбен бөлісу:
1   ...   4   5   6   7   8   9   10   11   12




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет