4. Жақындау принципі. Жақындау принципі бойынша әдістердің үш тобын бөліп алуға болады:
- интерполяциялық;
- экстраполяциялық;
- комбинациялық;
Экстраполяциялықәдістерін дискреттеу үшін сигналдың кідіруін талап етпейді, яғни нақты уақытта жұмыс істейтін, басқарушы жүйелерде қолданылуы мүмкін.
Интерполяциялық экстраполяциялық әдіспен салыстырғанда аралық есептеуді азайтуға қамтамасыз етеді, бірақ интерполяция интервалында сигналдың кідіруін талап етеді.
Интерполяциялық-экстрополяциялы әдістер үшін p(t) жақын функциясын табу процедурасы екі этапқа белінеді. Бірінші этапта интерполяция әдістері болып
Дискреттеу қадамын таңдау үшін сигналдардың әртүрлі моделдері қарастырылады және сәйкес есептеу критерийлері енгізіледі.
1) Санақ арасындағы интервал дискреттелген сигналдың жиілік спектрі есебімен таңдалатын жиілік критерийі;
2) Корреляциялы сигнал интервалдарымен санап шығарулар арасындағы интервалдар байланысын орнататын санап шығарудың корреляциялы критериі;
3) Сигналдың детерминалды моделі үшін берілетін және сигналдың деңгейі мен бірінші туындысы бойынша квантты саты мәнімен санақ арасындағы интервалдар тәуелділігін орнататын, санап шығарулардың квантты критериі;
Котельников теоремасы бойынша санақ шығарудың жиілігін таңдау. Котельниковпен шектелген спектрімен функция үшін теорема дәлелденген. Егер x(t) үздіксіз функция Дирихле шарттарын (үздіксіз шектелген және экстремумдарды соңгы санымен тұрады) канағаттандырады және оның спектрі кейбір fm жиілігімен шектелген болса, онда F0=2fmмұндагы: fm- x(t) сигналының S(jω) спектріндегі максималды жиілік, функциясымен алынған, өз мәнінің дискретті жиынымен толық анықталады. Бұл жағдайда, функция x(t)-x(ti) таңдауының нақты мәндері бойынша ағаттық мына түрде калпына келтірілуі мүмкін:
мұндағы:
Интерполяциялық қатар Котельников қатарыдеп аталады.
(*) дан шығатыны, шектелген жиілік спектрімен тұратын x(t) функциясы әрбір қосылғыш мына функция Z = у • (Sinx)/ X, мұндағы у = x(kΔT), x = ωm(t – k) мына түрде өрнектеліп қосынды (шексіз) түрінде қажеттеледі.