Тические методы и прикладные модели


Задачи линейного программирования



бет4/8
Дата06.01.2022
өлшемі188,5 Kb.
#13779
түріКурсовая
1   2   3   4   5   6   7   8
Байланысты:
КурсоваяЭММ

Задачи линейного программирования.

Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

f(X) =  СjXj  max(min);

 aij xj = bi, iI, IM = 1, 2,…m;

 aij xj  bi, iM;

Xj0, jJ, JN = 1, 2,…n.

При этом система линейных уравнений и неравенств, определяющая допустимое множество решений задачи W, называется системой ограничений задачи линейного программирования, а линейная функция f(X) называется целевой функцией или критерием оптимальности.

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалентна минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

1) если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;

2) если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;

3) если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;

4) если некоторая переменная Хk не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными::

Xk = X`k – Xl, где l – свободный индекс, X`k  0, Xk  0.


3.2. Постановка задачи линейного программирования


Под термином «транспортные задачи» понимается широкий круг задач не только транспортного характера. Общим для них является, как правило, распределение ресурсов, находящихся у m производителей (поставщиков), но n потребителям этих ресурсов.

На автомобильном транспорте часто встречаются следующие задачи, относящиеся к транспортным:



  • прикрепление потребителей ресурса к производителям;

  • привязка пунктов отправления к пунктам назначения;

  • взаимная привязка грузопотоков прямого и обратного направлений;

  • отдельные задачи оптимальной загрузки промышленного оборудования;

  • оптимальное распределение объемов выпуска промышленной продукции между заводами-изготовителями.

Транспортным задачам присущи следующие особенности:

  • распределению подлежат однородные ресурсы;

  • условия задачи описываются только уравнениями;

  • все переменные выражаются в одинаковых единицах измерения;

  • во всех уравнениях коэффициенты при неизвестных равны единице;

  • каждая неизвестная встречается только в двух уравнениях системы ограничений.

Транспортные задачи могут решаться симплекс-методом.
3.3. Решение транспортной задачи


Мощности

постав-


щиков

140


Мощности потребителей

U i

18

15

32

45

30

30

10

7/15

14

8/5

7/10

0

40

12

8

10

8/40

15

0

25

6/18

10

10

12

14/7

-7

45

16

10

8/32

12

16/13

-9

Vj

-1

7

-1

8

7



Начальное распределение выберем по методу наименьших стоимостей. Порядок заполнения клеток: (3,1), (1,2), (4,3). (2,4), (1,5), (1,4), (3,5), (4,5)

Суммарные затраты:

f(x) = 618+715+832+85+840+710+147+1613=1107

Рассмотрим процесс нахождения потенциалов для данного распределения.

Положим, Ui=0  V2=U1+C12=7; V5=U1+C15=7=U3+14=U4+16  U3= -7, U4= -9; V3=U4+C43= -1; V4=U2+8=U1+8  U2=U1=0; V4=8.

Найдем оценки: dij=(Ui+cij)-Vj:
11 0 15 0 0

(dij) = 13 1 11 0 8

0 -4 4 -3 0

8 -6 0 -5 0

Данный план не является оптимальным, т.к. есть отрицательные оценки.

Построим контур перераспределения для клетки (4,2). Наименьшая поставка в вершине контура со знаком “-” равна 13, поэтому проведем перераспределение поставок, уменьшив поставки в клетках со знаком “-” на 13 и увеличив поставки в клетках со знаком “+” на 13. результаты поставлены в таблице 2.




Мощности

постав-


щиков

140


Мощности потребителей

U i

18

15

32

45

30

30

10

7/2

14

8/5

7/23

0

40

12

8

10

8/40

15

0

25

6/18

10

10

12

14/7

-7

45

16

10/13

8/32

12

16

-3

Vj

-1

7

5

8

7



Суммарные затраты:

f(x) = 618+72+1013+832+85+840+7-23+14-7=1127

Положим U1=0

V2 = U1+C12=7=U4+10  U4 = -3

V3 = U4+8=5; V4=U1+8=8=U2+8  U2=0

V5 = U1+7= 7 = U3+14  U3= -7

V1 = U3+6= -1

dij = (Ui+Cij)-Vj

9 0 9 0 0

(dij) = 11 1 5 0 8

0 -3 -2 -3 0

14 0 0 1 6
Наличие отрицательных оценок свидетельствует о том, что план не является оптимальным. Построим контур перераспределения для клетки (3,2). Наименьшая поставка в вершине контура со знаком “-” равна 2. Произведем перераспределение поставок. Результаты представим в таблице 3.

Мощности

постав-


щиков

140


Мощности потребителей

U i

18

15

32

45

30

30

10

7

14

8/5

7/25

0

40

12

8

10

8/40

15

0

25

6/18

10/2

10

12

14/5

-7

45

16

10/13

8/32

12

16

-7

Vj

-1

7

5

8

7



Суммарные затраты:

f(x) = 618+102+1013+832+85+840+725+147=1119

Положим, U1=0  V4=8, V5=7; V4=U2+8  U2=0

V5 = U3+14  U3= 7-14= -7; V1= -7+6= -1; V2= -7+10= +3

V2=U4+10  U4=3-10= -7; v3= -7+8=1

9 4 13 0 0

(dij) = 13 5 9 0 8

2 0 2 -3 0

10 0 0 -3 2


Наличие отрицательных оценок свидетельствует о том, что план не является оптимальным. Построим контур перераспределения для клетки (3,4).

Наименьшая поставка в клетке со знаком “-” равна 5. Произведем перераспределение поставок результаты представим в таблице 4.



Мощности

постав-


щиков

140


Мощности потребителей

U i

18

15

32

45

30

30

10

7

14

8

7/30

0

40

12

8

10

8/40

15

0

25

6/18

10/2

10

12/5

14

-4

45

16

10/13

8/32

12

16

-4

Vj

2

+6

4

8

7



Суммарные затраты:

f(x) = 730+840+618+102+125+1013+832=1104

U1=0  V5= 7; U2=0  V4=8=U3+12  U3=-4 

V1= 6-4=2, V2=10-4=+6=U4+10; V3= -4+8= +4

8 1 10 0 0

(dij) = 10 2 6 0 8

0 0 2 0 3

10 0 0 0 5
Матрица оценок (dij) не содержат отрицательных величин  данный план является оптимальным, т.к. С34 = 0, а клетка (3,4) не является запятой, то данный план не является единственным. Стоимость перевозок по этому плану, как было рассчитано ранее, равна f(x) = 1104.
3.6. Симплекс-метод решения задач линейного программирования.
Симплекс-метод позволяет отказаться от метода перебора при решении задач линейной оптимизации, является основным численным методом решения задач линейного программирования и позволяет за меньшее число шагов, чем в методе перебора, получить решение.
Реализация алгоритма симплекс-метода.


  1. Записать задачу в канонической форме: заменить все ограничения-неравенства с положительной правой;

  2. Разделить переменные на базисные и свободные: перенести свободные переменные в правую часть ограничений-неравенств.

  3. Выразить базисные переменные через свободные: решить систему линейных уравнений (ограничений-неравенств) – относительно базисных переменных;

  4. Проверить неотрицательность базисных переменных: убедиться в неотрицательности свободных членов в выражениях для базисных переменных. Если это не так, вернуться к пункту 2, выбирая другой вариант разделения переменных на базисные и свободные.

  5. Выразить функцию цели через свободные переменные: базисные переменные, входящие в функцию, выразить через свободные переменные;

  6. Вычислить полученное базисное решение и функцию цели на нем: приравнять к 0 свободные переменные;

  7. проанализировать формулу функции цели: если все коэффициенты свободных переменных положительны (отрицательны), то найденное базисное решение будет минимально (максимально) и задача считается решенной;

  8. Определить включаемую в базис и исключаемую из базиса переменные: если не все коэффициенты при свободных переменных в функции цели положительны (отрицательны), то следует выбрать свободную переменную, входящую в функцию цели с максимальным по модулю отрицательным (положительным) коэффициентом, и увеличивать ее до тех пор, пока какая-нибудь из базисных переменных не станет равной 0. Свободную переменную рассматриваем как новую базисную переменную (включаемую в базис), а базисную переменную рассматриваем как новую базисную переменную (исключаемую из базиса);

  9. Используя новое разделение переменных на базисное и свободное, вернуться к пункту 3 и повторять все этапы до тех пор, пока не будет найдено оптимальное решение.

В заключение отметим, что определение оптимального решения распадается на два этапа:




Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет