Тические методы и прикладные модели



бет1/8
Дата06.01.2022
өлшемі188,5 Kb.
#13779
түріКурсовая
  1   2   3   4   5   6   7   8
Байланысты:
КурсоваяЭММ


МОСКОВСКИЙ КИНОВИДЕОИНСТИТУТ (филиал)

САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА КИНО И ТЕЛЕВИДЕНИЯ


КУРСОВАЯ РАБОТА

«Экономико-математические методы и прикладные модели»

Выполнила студентка 3-го курса

(ускоренный)

Ющак Е.В.

Преподаватель Манцев А.П.

г. Москва, 2002

I. Введение.

Предметом изучения дисциплины являются количественные характеристики экономических процессов, протекающих в промышленном производстве, изучение их взаимосвязей на основе экономико-математических методов и моделей. Эти модели линейного и нелинейного программирования, модели исследования операций, модели массового обслуживания.

Важное место отводится экономико-математическим моделям в ценообразовании. Особое внимание уделяется методам и моделям прогнозирования конъюнктуры рынка и определения цен, моделям и методам анализа инвестиционных проектов, моделям в управлении финансами.

Немалое место отводится моделям оптимального отраслевого и регионального регулирования – экономико-математическим моделям проекта развития отдельных отраслей промышленности. Это такие важные модели, как вариантная, транспортно-производственная, модель расчета топливного баланса региона.

Основным понятием является понятие математической модели. В общем случае слово модель – это отражение реального объекта. Такое отражение объекта может быть представлено схемой, эскизом, фотографией, моделью описательного характера в виде графиков и таблиц и т.д. Математическая модель – это система математических уравнений, неравенств, формул и различных математических выражений, описывающих реальный объект, составляющие его характеристики и взаимосвязи между ними. Процесс построения математической модели называют математическим моделированием. Моделирование и построение математической модели экономического объекта позволяют свести экономический анализ производственных процессов к математическому анализу и принятию эффективных решений.

Поскольку нами изучаются экономические задачи, то и строятся экономико-математические модели, включающие:



  1. выбор некоторого числа переменных величин для формализации модели объекта;

  2. информационную базу данных объекта;

  3. выражение взаимосвязей, характеризующих объект, в виде уравнений и неравенств;

  4. выбор критерия эффективности и выражение его в виде математического соотношения – целевой функции.

Итак, для принятия эффективных решений в планировании и управлении производством необходимо экономическую сущность исследуемого экономического объекта формализовать экономико-математической моделью, т.е. экономическую задачу представить математически в виде уравнений, неравенств и целевой функции на экстремум (максимум или минимум) при выполнении всех условий на ограничения и переменные.




Достарыңызбен бөлісу:
  1   2   3   4   5   6   7   8




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет