4.2 Вариациялық қатардың графигі
Вариациялық қатардың бейне көрінісін байқау үшін оның графигін тұрғызады. Ол үшін координаттар жүйесі тұрғызылады да, абсцисса өсіне вариация қатарының мәндерін, ал ордината өсіне оларға сәйкес жиілікті (немесе жиілгішті) отырғызады.
Дискретті вариациялық қатар болса, биіктігі жиілігіне сәйкес келетіндей етіп әр вариациялық дискретті белгіге, яғни абсцисса осіне тік бұрышты сызық жүргізіледі. Осы тікбұрышты сызықтарының төбелерін қосып, көпбұрыш алынады. Оны үлестірімділік кеңісі (полигон распределения) деп атайды да, төбелерді қосқан сызықтарды вариация қисығы немесе вариация жиілігінің үлестірімділік қисығы дейді. Жоғарыда айтқандай, үлестірімділік кеңісі дискретгі және үздіксіз вариациялық қатарға да түргызылуы мүмкін. Кеңістің барлық ординаттарының
Кез келген гистограмманы кеңіске айналдыруға болады. Ол үшін барлық тікбұрышты төртбұрыштың жоғарғы қабырғаларының ортасын бір сызықпен қосамыз, нәтижесінде кеңіс алынады.
Вариациялық қатар бойынша жиіліктер жиынымен тұрғызылған график кумулята деп аталады. Ол белгінің вариациялық заңдылығының функциясын бейнелейді. Топ өсу ретімен жиілік қосындыларынан құрылған графикті кумулята деп атайды. Дискретті қатар үшін график тұрғызғанда, бірінші топтың жиілігінен басталып жиіліктер жинала береді де, сол жиынның мәніне сәйкес ординаталар төбелерін түзу сызықпен қоса береміз, нәтижесінде кумулята алынады.
Үздіксіз вариациялық қатар үшін график нөлден басталып сызықтың екінші ұшы бірінші топтың жиілігіне сәйкес келсе, ал келесі екі топтың жиіліктерінің қосындысының мәніне сәйкестендіріп әрі қарай осы ретпен график тұрғызыла береді. Кумулятивтік қисықты кейде жиілік жиындарының кеңісі деп атайды.
Шошқа фермасындағы аналықтардың өнімі, яғни торайлар саны мынадай кумулятивтік қисықпен сипатталады (1.3-сурет):
Жиілік/: 4 7 11 15 10 9 6 3
Кумуляталар 2/' 4 11 22 37 47 56 62 65
Графикті тұрғызу жауапты істің бірі екенін атап өткеніміз жөн. Абсцисса өсінде вариация қатарының мәнінің масштабы дұрыс қойылмауы себепті, кейде ол сүйір немесе доғал төбелі болуы мүмкін. Мұндай жағдайда оқылып отырған белгінің заңдылығы қатты өзгеріске ұшырайды да, график зерттеушіге дұрыс шешім қабылдауға ықпал жасамайды.
Осындай жағдайды болдырмау үшін «Алтын қиыс» ережесі қолданылады. Осы ереже бойынша геометриялық құрылыстың табанының биіктігіне қатынасы мына мөлшерде болуға тиісті: 1:0,62. Сонымен вариациялық қисықтарды тұрғызган кезде тікбұрышты төрт бұрыштың координаттарының масштабын оның табаны биіктігінен (яғни ең максималды ординатаға сәйкес) 1,5-2,0 есе көп болатындай есеппен алған жөн. Топтық вариациялық қатарды нөлден бастаса, вариациялық қисық көзге көрнекті болады да және бас жиынның вариациялық заңдылығын дұрыс бейнелейді.
1.3-сурет. Торай сандарының кумулятивтік үлестірімдігі
Достарыңызбен бөлісу: |