Высшее образование



бет78/129
Дата31.12.2021
өлшемі5 Mb.
#21358
1   ...   74   75   76   77   78   79   80   81   ...   129
Байланысты:
19b6c9a

ал





Гомосерин дегидрогеназ;


Гомосерин


Цистатионин


I


Гомоцистеин


Гомоцистеин Треонин

Аспартат

+ АТФ | Аспартаткиназа Фосфоаспартат

Полуальдегид аспартата

\

Дигидропиколиновая кислота



а,5-Диаминопиме- ли новая кислота


Лизин



Метионин

Рис. 3.3. Схема биосинтеза лизина, метионина и треонина в клетках Corynebacterium glutamicum и Brevibacterium flavum: —»• — ингибирование по принципу обратной связи

руется или не функционирует гомосериндегидрогеназа, в результа­те чего блокируется синтез метионина и треонина. Такие мутанты являются ауксотрофами по гомосерину или треонину (метионину); внутриклеточная концентрация треонина у них существенно сни­жена, что снимает блокаду с аспартаткиназы. Поэтому при выра­щивании мутантных штаммов в среде, где присутствуют лимити­рующие концентрации метионина и треонина, они способны об­разовывать избыточные количества лизина. Мутанты второго типа дефектны по структурному гену, детерминирующему конформа- цию аспартаткиназы. В итоге фермент теряет чувствительность к высоким концентрациям аллостерического ингибитора — лизина.

Важный фактор, обеспечивающий в культуральной среде вы­сокие концентрации аминокислоты, синтезированной внутри клетки, — проницаемость клеточных мембран. Проницаемость кле­точной мембраны увеличивают либо с помощью мутаций, либо путем изменения состава питательной среды. В последнем случае в культуральной среде создают дефицит биотина (1 — 5 мкл/л), до­бавляют пенициллин (2 — 4 мкг/л), детергенты (твин-40 и твин- 60) или производные высших жирных кислот (пальмитаты, стеа- Раты). Биотин контролирует содержание в клеточной мембране фосфолипидов, а пенициллин нарушает биосинтез клеточных сте­нок бактерий, что повышает выделение аминокислот в среду.

Для культивирования штаммов микроорганизмов при произ­водстве аминокислот как источники углерода наиболее доступны Углеводы — глюкоза, сахароза и реже фруктоза и мальтоза. Для снижения стоимости питательной среды в качестве источнико

в

углерода используют вторичное сырье: свекловичную мелассу, молочную сыворотку, гидролизаты крахмала, сульфитные щело­ка. Технология этого процесса совершенствуется в направлении разработки дешевых синтетических питательных сред на основе уксусной кислоты (до 1,5%), пропионовой кислоты, метанола, этанола (до 1 %) и н-парафинов. В качестве источников азота при­меняют мочевину и соли аммония (сульфаты и фосфаты). Для ус­пешного развития микроорганизмы нуждаются в стимуляторах роста, в качестве которых выступают экстракты кукурузы, дрож­жей и солодовых ростков, гидролизаты отрубей и дрожжей, вита­мины группы В. Кроме того, в питательную среду добавляют не­обходимые для жизнедеятельности макро- и микроэлементы (Р, Са, Mg, Мп, Fe и др.). На процесс биосинтеза аминокислот суще­ственное влияние оказывает снабжение воздухом, при этом сте­пень аэрации индивидуальна для производства каждой конкрет­ной аминокислоты. Стерильный воздух подается специальными тур­бинными мешалками (рис. 3.4). Опыты показали, что лизин появ­ляется в культуральной среде начиная с середины экспоненци­альной фазы роста культуры клеток микроорганизма и достигает максимума к ее концу. Поэтому на первой стадии технологического процесса формируют биомассу продуцента, которую выращивают в специальных посевных аппаратах в течение суток (рН 7,0 — 7,2; температура 28 — 30 °С), а затем подают в производственный фер­ментер, заполненный питательной средой. Лизин начинает посту­пать в культуральную жидкость через 25 — 30 ч после начала фермен­тации. По завершении процесса ферментации (через 55 — 72 ч) жидкую фазу отделяют от культуры клеток микроорганизма филь­трованием и используют для выделения из нее лизина.

Высокоочищенные препараты лизина получают после фрак­ционирования фильтрата культуральной жидкости методом ионо­обменной хроматографии на катеоните. С этой целью лизин пере­водят в форму катиона:

H3N—СН— СООН I

(СН2)4

I

NH3

Для данного процесса фильтрат обрабатывают соляной кисло­той до рН 1,6—2,0 (рН < рК,). Обладая двумя положительно заря­женными ионогенными группировками, лизин прочно сорбирует­ся на смоле и элюируется с нее в виде индивидуального соедине­ния 0,5 — 5 %-м раствором гидроксида аммония после выхода всех других катионов. Элюат концентрируют в вакууме при температуре 60 °С, переводят в форму монохлоргидрата, после чего высушива­ют и дополнительно чистят с помощью перекристаллизации. В ре-




Рис. 3.4. Технологическая схема получения кормовых препаратов лизина (по B.C.Шевелухе и др., 1998):

1 — подача свекловичной мелассы; 2
— водная суспензия кукурузного экстракта и питательных солей; 3 — нагревательная колонка; 4, 5 — теплообменники; 6 — посевные аппараты; 7 — подача посевного материала; 8 — система фильтров для очистки и стерилизации воздуха; 9 — ферментер; 10 — фильтры для очистки отходящих газов; 11 — получение монохлоридгидрата лизина; 12 — подача соля­ной кислоты; 13, 14 — выход и подогрев монохлоридгидрата лизина; 15 — выпа- ривательная установка; 16 — сборник ЖКЛ; 17 — смешивание ЖКЛ с наполни­телем; 18 — распылитель; 19— подача горячего воздуха; 20— очиститель воздуха; 21 — отделение сухого препарата лизина от воздуха; 22 — приемник ККЛ




зультате получают препараты кристаллического лизина 97 — 98 %-й чистоты, которые используют для повышения питательной цен­ности пищевых продуктов и в медицинской промышленности.

Кроме высокоочищенных препаратов лизина получают иные виды его товарной формы: жидкий концентрат лизина (ЖКЛ), сухой кормовой концентрат лизина (ККЛ) и высококонцентри­рованные кормовые препараты, характеризующиеся относитель­но меньшей степенью очистки в сравнении с первым препаратом

.
Второй по значимости незаменимой аминокислотой для пита­ния человека и животных является метионин, который получают преимущественно путем химического синтеза, что экономически более выгодно в сравнении с микробиологическим способом.

Производство триптофана. Триптофан достаточно часто явля­ется лимитирующим фактором питания, так как его содержание в традиционных продуктах (рыба, молоко, кормовые дрожжи) в 3 раза ниже, чем в стандартном белке.

Подобно лизину триптофан образуется в ходе разветвленного метаболического пути, поэтому для его производства используют ауксотрофных мутантов, у которых блокированы реакции, веду­щие к синтезу фенилаланина и тирозина. Однако при выращива­нии мутантных штаммов в среде с минимальной концентрацией этих аминокислот, не вызывающей регуляторных эффектов, из­быточное накопление триптофана в среде не наблюдается, что объясняется особенностью процессов регуляции биосинтеза трип­тофана у микроорганизмов.

Наряду с другими ароматическими аминокислотами у микро­организмов (подобно большинству организмов) триптофан обра­зуется из метаболитов углеводного обмена — эритрозо-4-фосфата и фосфоенолпирувата.

Процесс новообразования ароматических аминокислот идет через шикимовую и хоризмовую кислоты. Метаболическим пред­шественником триптофана служит антраниловая кислота, кото­рая возникает из хоризмовой кислоты под действием антранилат- синтетазы. Триптофан оказывает ингибирующее действие на ант- ранилатсинтетазу, поэтому для обхода метаболического контроля синтез фермента индуцируют ступенчатым введением предше­ственника — антраниловой кислоты (0,1 — 0,3 %):

Фосфоенолпируват + Эритрозо-4-фосфат



Достарыңызбен бөлісу:
1   ...   74   75   76   77   78   79   80   81   ...   129




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет