1-Лекция. Математиканы оқыту әдістемесінің, негізгі мәселелері мен мақсаттары


Математиканы оқыту процесіндегі индукция мен дедукция



бет8/19
Дата27.02.2022
өлшемі157 Kb.
#26485
түріЛекция
1   ...   4   5   6   7   8   9   10   11   ...   19
Байланысты:
Дәріс материалдары

Математиканы оқыту процесіндегі индукция мен дедукция Индуктивтік ой қорыту адамдардың қоғамдық және өндірістік практикасының көп ғасырлық бақылауы мен тәжірибесінен қалыптасты. Ойымызды тұжырымдаудың әр түрлі формасы ретінде индукция ертедегі грек философы Сократтың (б. э. д. 469-399 жж.) еңбектерінде кездеседі. «Индукция» термині латынның inductio – «түрткі», «кірістіру», «жекеден көпке», «жалқыдан жалпыға» көше отырып пайымдау жолы деген сөзі. Оның негізгі үш мәні бар: ойды тұжырымдап айтып берудің негізгі түрінің бірі – екі немесе бірнеше элементар жеке пікірлерден жаңа жалпы тұжырым жасау; кейбір нысандар жиынын үйрету үшін жеке нысандарды қарастырады. Олардың арасындағы ортақ қасиеттерді іздестіріледі, жеке айғақтан жасалған тұжырым барлық нысандардың қасиеті ретінде алынады; оқыту процесінде материалды жалпылай жеткізетін зерттеу әдісі болып табылады. 1-мысал. Элементар пікірлер: шеңбер түзумен ең көп дегенде екі нүктеде қиылысады. Сол сияқты эллипс түзумен екі нүктеде қиылысады; парабола түзумен екі нүктеде қиылысады; гипербола түзумен екі нүктеде қиылысады. Дербес пікірлер: эллипс, парабола, гипербола – конустық қималардың әр түрдегі көрінісі, бұлар екінші ретті қисықтар жиынын құрайды. Жаңа жалпы пікір: екінші ретті қисықтар түзумен ең көп дегенде екі нүктеде қиылысуы мүмкін. 2-мысал. Төмендегі формуламен берілген сан тізбегін қарастырайық (6-кесте) 6-кесте – Қате пікірлердің пайда болуына мысал тақ сан тақ сан тақ сан Қорытынды тақ сан Қорытынды қате пікір: құрама сан Математикалық индукция қағидасы орындалған жоқ Толымсыз индукция Индукцияның толымсыз және толық болып бір-бірінен өзгешеленетін екі түрі бар. Зерттеу әдісі ретінде толымсыз индукция – жеке айғақтар өте көп болып, бірақ олардың барлығын бірдей қарастырмай тек кейбіреулерін ғана қарастырып тек солардағы ерекшеліктерді байқап, осылар арқылы жалпы қорытынды жасайтын болсақ, бұл толымсыз индукция болып табылады. Толымсыз индукциямен жасалған қорытынды дұрыс болмауы да мүмкін алғашқы жеке айғақтарда бар ерекшелік, кейінгілерінде болмайтын жағдайлар кездеседі. Өйткені педагогикалық үдерісте, әсіресе жеке дәйектер өте көп болып, олардың барлығын бірдей қарастыру мүмкін болмағанда, тек бірнеше дербес дәйектерден жасалған қорытындының өзі де дұрыс болатыны адамның іс-тәжірибесінде бұрыннан сыналған (мысалы, ықтималдар теориясы мен математикалық статитикада). Толымсыз индукция әдісін қолданып бір қорытынды тұңғыш рет жасалған болса, оны міндетті түрде әр түрлі әдіспен тексеру қажет. Бұл үшін бірнеше пікірлерден ұқсас қорытындылар жасап, дәлелдеуді күшейтеміз. Мысалы, осы әдіспен мектепте арифметикалық, геометриялық прогрессия өтіледі. Бұл нәтижеге келгенімізбен, міндетті түрде дәлелдеу қажет. Математика дамуының алғашқы сатысында сондай-ақ жеке адамның және барлық адам баласының өмірінде математикалық шындықтарды танып білудің бірден-бір жолы бақылау мен тәжірибе, бір сөзбен айтқанда индукция болған. 2 мен 3-тің қосындысы 5 болатынын, екі нүктенің арасындағы ең жақын арақашықтық түзу екенін адамдар күнделікті бақылау арқылы білген. Миллион рет қайталанған тәжірибелерден, адамдарда оймен орындау қабілеті пайда болады. Толық индукция Барлық дербес жағдайларды қарастыра келіп шығарылған жеке-жеке қорытындыларды пайдаланып жалпы бір қорытынды жасауды толық индукция дейді. Егер жағдайлар саны шектеулі болып, олардың барлығын толық қарастырсақ, онда одан толық индукциямен жасалған қорытынды болады. Мысалы, 10-ға дейінгі жай сандарды көбейткіштерге жіктейміз. 10-ға дейінгі сандардың ішінде 4 жай сан бар, қосымша дәлелдеуді қажет етпейді. Сонымен, толық индукциямен жасалған қорытынды әркез ақиқат болады, сондықтан толық индукция ғылыми дәлелдеу әдісі болып табылады. Жеке жағдайлар шексіз көп болғанда, онда толық индукция емес, толымсыз индукция қолданылады да, қорытындысының дұрыстығы математикалық индукциямен тексеріледі немесе математикалық индукция қолданылады. Көбінесе, математикада дербес жағдайлары өте көп болатындықтан, олардың барлығын қарастырудың мүмкіншілігі бола бермейді. Сондықтан толық индукцияда сирек қолданылады. Бірақ оның есесіне толық индукцияны қолдану мүмкіндігі болған жерде, ол арқылы жасалған қорытынды әрқашан дұрыс болады. Егер шексіз көп дербес жағдайлар жиынын өзара байланыссыз бөліктерден тұратан шектеулі жиындарға бөлу мүмкіндігі болса, онда ол дербес жағдайлар толық индукциямен дәлелденеді. Іштей сызылған бұрышты өлшеу туралы оқығанда негізінен 3 түрлі жағдайды қарастырамыз (4, 5, 6-суреттер): а) Іштей сызылған бұрыштың бір қабырғасы шеңбер диаметрі болады. б) Шеңбер диаметрі бұрыштың ішкі облысында жатады. в) Шеңбер диаметрі бұрыштан тыс жатады – бұларды дәлелдеуге толық индукция қолданылады. Бұл арада теореманы толық индукциямен дәлелденген деп аталады. . Индукциялық ой қорыту нысандардың арасында себепті байланыстар орнатады. Бақылау мен эксперименттің нәтижесінде нысандар арасында белгілі қатынастармен байланыстар орнатылады. Бұларға жасалатын индукциялық ой қорыту – белгіліден белгісізге көшу процесін ықтималдығы белгілі мөлшердегі ақиқат пікір деуге болады. Соңғы мысалдардан бұл индукцияны зерттеу индукциясы деп атайды. Оқыту үдерісінде бұл әдіс ұғымдардың немесе пікірлердің арасында белгілі бір логикалық байланыс орнату үшін қолданылады. Математиканы оқытуда бұл әдіс әр түрлі формада кездеседі (ұғымдар немесе ой арасындағы логикалық байланыс орнатуға, қабылданған математикалық анықтамалардың дәлелді әдістемесі ретінде, нақты тақырыпты оқыту тәсілі ретінде қолданылады). Дедукция Дедукция (латынша deductio – бір жола шығару). Бір жалпы пікірден және бір дербес пікірден жаңа, барынша жалпы немесе дербес пікірге көшуді дедукция, деп атаймыз. Барлық аттас дұрыс көпбұрыштар ұқсас (1-пікір). Берілген дұрыс көпбұрыштар аттас (2-пікір). Берілген дұрыс көпбұрыштар ұқсас болады (жаңа пікір – қорытынды). Осы жағдайлардан жаңа қорытынды шығарайық. Пікірлер логикасында қорытылған жаңа пікірді алғы шарт деп атайды. Олардан қорытылған жаңа пікірді ой қорыту деп атайды. Жоғарыдағы мысалда жалпы сөз тіркесі «Дұрыс аттас көпбұрыштар». Дедукцияның мәні – берілген дербес жағдайды жалпы жағдайдан шығару болып табылады. Дедукциялық ойлаудың дұрыстығы алғашқы екі тұжырымға тәуелді. Егер екі тұжырым дұрыс болса және дұрыс қорытынды шығарылса, онда қорытындысы да ешбір талассыз дұрыс. Дедуктивтік ой қорытудың келесі түрлері болуы мүмкін: - барынша жалпы жағдайдан ой қорытудан барынша дербес жеке жағдайдағы ой қорытуға көшу. - жалпы жағдайдағы ой қорытудан жалпы жағдайға көшу. Мысалы, барлық жұп сандар 2-ге бөлінеді; барлық тақ сандар 2-ге бөлінбейді, ешбір жұп сан бір мезгілде тақ сан бола алмайды. Жеке пікірден дербес пікірге көше отырып ой қорыту. Мысалы, 2 саны – жай сан; 2 саны – натурал сан, кейбір натурал сан жай сан болып табылады Математикалық ой қорытулар көбінесе дедукциялық болады. Қысқаша айту мақсатында кейбір тұжырымдар қалдырылады: Мысалы, берілген дұрыс көпбұрыштар ұқсас, себебі олар аттас. Математика дедукциялық ғылым. Шынында да математикалық пәнді қатаң баяндағанда негізгі ұғымдар мен олардың өзара қатысы, байланысы орнатылады (олар белгілі ұғымдар мен олардың қатынасы арқылы анықталады), бұдан соң бұл ұғымдар мен қатыстарды байланыстыратын аксиомалар жүйесі құрастырылады. Негізгі ұғымдар мен қатыстар аксиомалар жүйесінің негізінде жаңа ұғым пайда болады, тікелей ой қорыту ережесі пікір мен оның салдары логикалық реттілікпен баяндалады. Теореманы дедукциялық тұрғыдан дәлелдеу жүргізілген қадамның тек логикалық реттілігі болып қана қоймай, бұрыннан белгілілерге сүйеніп, сонымен бірге әрбір қадамның, тұжырымның дұрыстығын дәлелдеу болып табылады.



Достарыңызбен бөлісу:
1   ...   4   5   6   7   8   9   10   11   ...   19




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет