Дәлелдеуді қажет ететін есептер Математиканы оқытудың маңызды міндеттерінің бірі оқушыларға дәлелдеуді үйрету. Жай есептердің өзі дәлелдеуден басталады. Мұндай есептердің жауабын іздеу олардың шындығын іздеуге әкеледі. Есептер өзінің шешімін табуда берілген мәліметтер арқылы дәлелдеуге тиісті ұғымға логикалық қадам жасап, ілгерілеуге жетелейді. Күрделі есептер бірнеше логикалық тізбектен тұрады. Есептерді шешу – зерттеліп отырған ұғымды нақтылау, соның табиғатын түсіну, оның әр түрлі байланыстарын қарастыру, символика тілін пайдалану, дәлелдеу. Мысалы, а) x > y теңсіздігінен х2 > y2 теңсіздігі шыға ма? ә) екі биссектриса әрқашан перпендикуляр бола ма? б) екі биіктік әрқашан перпендикуляр бола ма? Математикалық білік және дағды қалыптастыруға арналған есептер
Мысалы, теплоход өзен ағысы бойынша 48 км жүзіп кейін қайтты, бүкіл жолға 5 сағат уақыт жұмсады. Өзен ағысының жылдамдығы 4 км/сағ. Теплоходтың меншікті жылдамдығын табыңыздар. Егер теплоходтың меншікті жылдамдығын V км/сағ десек, 5V2 – 96V – 20, V ¹ ± 4. Квадрат теңдеуді шешу тәсілдері осылайша мәселелік жағдайға келтіріледі. Алғашқы бағасы 10000 теңге болатын бұйым 4 жыл ішінде әр жылы 5% арзандаған болса, оның бағасы енді қанша болды? Есептің шешуіне А = 10000(, формуласы қолданылады, мұндағы t = 4. A = 10000((т). Көрсеткіштік функция мәселелік жағдайға келтіріледі. Мысалы, берілгені Д/к. DABM = DBCN болатынын бұл есепті шешу арқылы 8-сынып оқушылары Фалес теоремасын жеңіл дәлелдейді (9-сурет). 9-сурет Дарынды психолог, әрі математик Д. Пойа өзінің «Есепті қалай шығару керек» деген кітабында есеп шығарудың жалпы әдістерін жасауға ұмтылған. Автор есеп шығару барысын төрт кезеңге бөледі: а) Есепті түсіну (есептің шарты). ә) Есепті шығару жоспарын құру (талдау). б) Бұл жоспарды орындау (синтез). в) Өткенге көзқарас (есептің шешілуін ұғыну). Д. Пойа есеп шығаруды үйретудің тиімділігін арттыруда оларды іріктеу үлкен роль атқарады дейді. Бірақ біз тек есептерді іріктеу оқушылардың есеп шығарудың талдау (анализ), синтез, индукция, дедукция, т.с.с негізгі әдістері мен тәсілдерін меңгеруін қамтамасыз ете алмайды деп ойлаймыз. Талдау дегеніміз белгісізден белгіліге қарай пайымдау жолы, синтез дегеніміз белгіліден белгісізге қарай көшу жолы, ал индукция жекеден жалпыға көшу, дедукция жалпыдан жекеге көшу. Бұрынғы шығарған есеппен аналогияны іздестірудің өзі бұған ұқсасты еске түсіруді ғана емес, сол аналогияны табу үшін аналитикалық-синтетикалық әдісті қолдануды талап етеді. Сондықтан есептер жүйесін іріктеумен қатар әрбір есепті шығарғанда мұғалім мен оқушының жүргізген жұмысының әдістемесінің ролі мен маңызы үлкен. Мұғалімнің есеп шығарғандағы әдістемелік жұмысы, біріншіден шығарылған есептің шартын талдаушы, екінші жағынан синтездейотырып, есеп шығаруды үйретудің тиімділігін қамтамасыз етеді. Д. Пойаның ұсыныстары талқылау құрылымдарын қалыптастыруға ықпал етіп, есеп шығарушыны ізденіске бағыттайды. Бірақ, барлық ұсыныстарды орындау есептің шығарылуына толық кепілдік бере алмайды.