Жауабы: arcctg1/3+ πп, пεZ,π/4+ πп, пεZ
ІІ.Тригонометриялық теңдеулерді түрлендіру жолымен шешілетін тригонометриялық теңдеулер.
Мысалдар қарастырайық.
-мысал. sіnх+ sіn2х + sіn3х = 0 теңдеуін шешейік.
Шешуі.Берілген теңдеуді шешу үшін қосылғыштардың орнын ауыстырып , топтаймыз. Сонда (sіnх+sіn3х)+sіn2х=0 шыгады.
Енді жақша ішіндегі өрнекке синустардың қосындысының формуласын, яғни sіnα+ sіnβ =2sіn(α+β)/2· соs(α-β)/2 пайдаланамыз.Сонда 2sіn(х+3х)/2· соs(х-3х)/2+ sіn2х = 0, 2sіn2х· соs(-х)+ sіn2х = 0,sіn2х· (2соsх+1)= 0,
Берілген тендеу sіn2х= 0, соs х =-1/2 түріндегі екі қарапайым теңдеуге келеді.
Бірінші теңдеудің шешімі: 2х = πп, х = π/2п, пεZ.
Екінші теңдеудің шешімі: х = ±2π/3+2πп, пεZ.
Жауабы: π/2п, пεZ; ±2π/3+2πп, пεZ.
Достарыңызбен бөлісу: |