U2/=KU2. (2.16)
Екінші реттік ораманың активтік кедергісіндегі шығындардың теңдігінен келтірілген активтік кедергіні табамыз
Екіншілiк ораманың келтірілген реактивтік кедергісі ұқсас табылады
X2/=K2 X2. (2.17)
Екіншілiк ораманың келтірілген толық кедергісі
Z2/=K2 Z2. 6 сурак. Транс орын басу схема.
Бірінші және екінші реттік тізбектер арасындағы магниттік байланыс электрлік байланыспен ауыстырылған, келтірілген трансформатордың орынбасу сұлбасын электр магниттік процестерді зерттеуге және қуат шығындарын анықтауға жеңілдік беретін әдіс деп тануға болады.
Келтірілген трансформатордың трансформациялау коэффициентi К=1-ге, яғни Е2= Е2/-ке тең болғандықтан, А және а, X және x нүктелерінің потенциалдары бірдей болады, сол себептен бұл нүктелерді электрлік біріктiру арқылы орынбасу схемасын аламыз (3.1- сурет).
Бұл сұлба келтірілген трансформатордың ЭҚК-тері токтарының теңдеулеріне (2.І8) сәйкес құрылады және мына үш тармақтың жиынтығы болып табылады: кедергісі Z1 = R1+jX1, тоғы İ1 – бірінші реттiк тармак, кедергiсi Z0=R0+jX0, тоғы İ0 – магниттеушi тармақ, кедергiсi Z2/= R2/+X2/, тоғы İ2/-екiншi реттiк тармақ.
Орынбасу сұлбасындағы кедергi Zж –тiң шамасын өзгерту арқылы трансформатордың бүкiл жұмыс тәртiптерiн қарастыруға болады.
Z1, Z2/және Z0параметрлерi тұрақты болады; оларды бос жүрiс және қысқа тұйықтау тәжiрибелерi арқылы табуға болады.
6 сурак.тарнсф.активти – индуктивти жуктеме кезиндеги векторлык диаграммасы. Векторлық диаграмма (3.2-сурет) орынбасу сұлбасына және теңдеулерге сүйенiп тұрғызылады, ол арқылы токтардың, ЭҚК-тердiң және кернеулердiң ара қатысын көрнекі көруге болады