§11. Прямая на плоскости


Яғни: 1) Түзудің жазықтықтағы теңдеуі бірінші ретті сызық болып табылады. Жалпы түрі: Ax+By+C = 0, мұндағы A,B,C – сандар



бет2/4
Дата21.11.2022
өлшемі0,69 Mb.
#51438
1   2   3   4
Байланысты:
Дәріс 11 жазықтықтағы түзу

Яғни:

1) Түзудің жазықтықтағы теңдеуі бірінші ретті сызық болып табылады. Жалпы түрі: Ax+By+C = 0, мұндағы A,B,C – сандар.

2) A және B коэффициенттері бір уақытта нөлге айналмайды. Себебі, геометриялық тұрғыдан алғанда олар түзуге перпендикуляр вектордың координаталары.

Түзуге перпендикуляр вектор осы түзудің нормаль векторы деп аталады.

Егер Ax+By+C = 0 теңдеуінің барлық коэффициенттері нөлден өзгеше болса, онда ол толық деп, егер кемінде бір коэффициенті нөлге тең болса – теңдеу толық емес деп аталады.

Егер Ax+By+C = 0 теңдеуінің барлық коэффициенттері нөлден өзгеше болса, онда ол толық деп, егер кемінде бір коэффициенті нөлге тең болса – теңдеу толық емес деп аталады.

1) Айталық түзудің жалпы теңдеуі толық болсын. Онда оны келесі түрде жазуға болады:


(5) теңдеу түзудің кесіндідегі теңдеуі деп аталады.

2) Айталық жалпы теңдеудегі A және B – нөлдік емес, ал C = 0, яғни

2) Айталық жалпы теңдеудегі A және B – нөлдік емес, ал C = 0, яғни

Ax+By = 0.

Мұндай түзу координаталар басы O(0;0) арқылы өтеді:

3) Айталық, жалпы теңдеудің түрі келесідей болсын:

3) Айталық, жалпы теңдеудің түрі келесідей болсын:

Ax+C = 0 немесе By+C = 0.

Бұл теңдеулерді келесідей жазуға болады:

x = a немесе y = b .


Яғни, түзудің теңдеуінің құрамында координаталардың бірі болмаса, түзу осы жоқ координатаның осіне параллель болады.
4) Айталық, түзудің жалпы теңдеуінде C = 0 және A немесе B коэффициенттерінің бірі нөл болсын, яғни
Ax = 0 немесе By = 0.
Бұл теңдеулерді келесі түрде жазуға болады:
x = 0 (Oy координаталар осінің теңдеуі)
және
y = 0 (Ox координаталар осінің теңдеуі).


Достарыңызбен бөлісу:
1   2   3   4




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет