Алгоритмы. Алгоритмизация. Алгоритмические языки



бет15/16
Дата15.02.2023
өлшемі171,59 Kb.
#68183
1   ...   8   9   10   11   12   13   14   15   16
Байланысты:
Алгоритм

з)



г)



и)



д)



к)




[ Ответ ]
7.2. Запишите в обычной математической форме арифметические выражения:

а) a / b ** 2;
б) a+b/c+1;
в) 1/a*b/c;
г) a**b**c/2;
д) (a**b)**c/2;
е) a/b/c/d*p*q;
ж) x**y**z/a/b;
з) 4/3*3.14*r**3;
и) b/sqrt(a*a+b);
к) d*c/2/R+a**3;

л) 5*arctg(x)-arctg(y)/4;
м) lg(u*(1/3)+sqrt(v)+z);
н) ln(y*(-sqrt(abs(x))));
о) abs(x**(y/x)-(y/x)**(1/3));
п) sqrt((x1-x2)**2+(y1-y2)**2);
р) exp(abs(x-y))*(tg(z)**2+1)**x;
c) lg(sqrt(exp(x-y))+x**abs(y)+z);
т) sqrt(exp(a*x)*sin(x)**n)/cos(x)**2;
у) sqrt(sin(arctg(u))**2+abs(cos(v)));
ф) abs(cos(x)+cos(y))**(1+sin(y)**2);


[ Ответ ]
7.3. Вычислите значения арифметических выражений при x=1:
а) abs(x-3)/ln(exp(3))*2/lg(10000);
Решение: abs(1-3)=2; ln(exp(3))=3; lg(10000)=4; 2/3*2/4=0.33;
б) sign(sqrt(sqrt(x+15)))*2**2**2;
в) int(-2.1)*int(-2.9)/int(2.9)+x;
г) -sqrt(x+3)**2**(sign(x+0.5)*3)+tg(0);
д) lg(x)+cos(x**2-1)*sqrt(x+8)-div(2,5);
е) sign(x-2)*sqrt(int(4.3))/abs(min(2,-1));
ж) div(10,x+2)*mod(10,x+6)/max(10,x)*mod(2,5).
[ Ответ ]
7.4. Запишите арифметические выражения, значениями которых являются:
а) площадь треугольника со сторонами a, b, c (a, b, c>0) и полупериметром p;
 Ответ: sqrt(p*(p-a)*(p-b)*(p-c));
б) среднее арифметическое и среднее геометрическое чисел a, b, c, d;
в) расстояние от точки с координатами (x,y) до точки (0,0);
г) синус от x градусов;
д) площадь поверхности куба (длина ребра равна а);
е) радиус описанной сферы куба (длина ребра равна а);
ж) координаты точки пересечения двух прямых, заданных уравнениями
a1x+b1y+c1=0 и a2x+b2y+c2=0 (прямые не параллельны).
[ Ответ ]
7.5. Вычислите значения логических выражений:
а) x*x+y*y<=9 при x=1, y=-2
Ответ: да;
б) b*b-4*a*c<0 при a=2, b=1, c=-2;
в) (a>=1) и (a<=2) при a=1.5;
г) (a<1) или (a>1.2) при a=1.5;
д) (mod(a,7)=1) и (div(a,7)=1) при a=8;
е) не ((a>b) и (a<9) или (а*а=4)) при a=5, b=4.
[ Ответ ]
7.6. Запишите логические выражения, истинные только при выполнении указанных условий:
а) x принадлежит отрезку [a, b]
Ответ: (x>=a) и (x<=b);
б) x лежит вне отрезка [a, b];
в) x принадлежит отрезку [a, b] или отрезку [c, d];
г) x лежит вне отрезков [a, b] и [c, d];
д) целое k является нечетным числом;
е) целое k является трехзначным числом, кратным пяти;
ж) элемент ai,j двумерного массива находится на пересечении нечетной строки и четного столбца;
з) прямые a1x+b1y+c1=0 и a2x+b2y+c2=0 параллельны;
и) из чисел a, b, c меньшим является с, а большим b;
к) среди чисел a, b, c, d есть взаимно противоположные;
л) среди целых чисел a, b, c есть хотя бы два четных;
м) из отрезков с длинами a, b, c можно построить треугольник;
н) треугольники со сторонами a1, b1, c1 и a2, b2, c2 подобны;
о) точка с координатами (x,y) принадлежит внутренней области треугольника с вершинами A(0,5), B(5,0) и C(1,0);
п) точка с координатами (x,y) принадлежит области, внешней по отношению к треугольнику с вершинами A(0,5), B(1,0) и C(5,0);
р) четырехугольник со сторонами a, b, c и d является ромбом.
[ Ответ ]
7.7. Начертите на плоскости (x,y) область, в которой и только в которой истинно указанное выражение. Границу, не принадлежащую этой области, изобразите пунктиром.
 


а) (x<=0) и (y>=0)
Ответ:
 

е) ((x-2)**2+y*y<=4) и (y>x/2)
Ответ:
 

б) (x>=0) или (y<=0)
в) x+y>=0
г(x+y>0) и (y<0)
д) abs(x)+abs(y)>=1

ж) (x*x+y*y<1) и (y>x*x);
з) (y>=x) и (y+x>=0) и (y<=1);
и) (abs(x)<=1) и (y<2);
к) (x**2+y**2<4) и (x**2+y**2>1);


[ Ответ ]
7.8. Запишите логическое выражение, которое принимает значение "истина" тогда и только тогда, когда точка с координатами (x, y) принадлежит заштрихованной области.




















[ Ответ ]
7.9. Пусть a=3, b=5, c=7. Какие значения будут иметь эти переменные в результате выполнения последовательности операторов:
а) a:=a+1; b:=a+b; c:=a+b; a:=sqrt(a)
Решение: a=3+1=4, b=4+5=9, c=4+9=13, a= {корень квадратный из} 4 =2.
Ответ: а=2, b=9, c=13;
б) с:=a*b+2; b:=b+1; a:=c-b**2; b:=b*a;
в) b:=b+a; c:=c+b; b:=1/b*c;
г) p:=c; c:=b; b:=a; a:=p; c:=a*b*c*p;
д) c:=a**(b-3); b:=b-3; a:=(c+1)/2*b; c:=(a+b)*a;
е) x:=a; a:=b; b:=c; c:=x; a:=sqrt(a+b+c+x-2);
ж) b:=(a+c)**2; a:=lg(b**2)**2; c:=c*a*b.
[ Ответ ]
7.10. Задайте с помощью операторов присваивания следующие действия:
а
массив X=(x1, x2) преобразовать по правилу: в качестве x1 взять сумму, а в качестве х2 — произведение исходных компонент;
Решение: c:=x[1]; x[1]:=x[1]+x[2]; x[2]:=c*x[2]
б) поменять местами значения элементов массива X=(x1, x2);
в) в массиве A(N) компоненту с номером i (1) заменить полусуммой исходных соседних с нею компонент, соседнюю справа компоненту заменить на нуль, а соседнюю слева компоненту увеличить на 0.5;
г) u = max(x, y, z) + min(x-z, y+z, y, z);
[ Ответ ]
7.11. Задайте с помощью команд если или выбор вычисления по формулам:

a)



б)



в)

 
где 


г)



д)



е)



ж)



если точка лежит внутри круга радиусом r (r>0) с центром в точке (a,b) 
в противном случае


[ Ответ ]
7.12. Постройте графики функций y(x), заданных командами если:

а) если x<=-1 то y:=1/x**2 иначе если x<=2 то y:=x*x иначе y:=4 все все



Достарыңызбен бөлісу:
1   ...   8   9   10   11   12   13   14   15   16




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет