ҚАЗАҚСТАН РЕСПУБЛИКАСЫ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН
MINISTRY OF EDUCATION AND SCIENCE OF KAZAKHSTAN
Қ.И.Сәтбаев атындағы Қазақ ұлттық техникалық университеті
Казахский национальный технический университет имени К.И.Сатпаева
Кazakh national technical university named after К.І. Satpayev
Қ.И.Cәтбаев атындағы ҚазҰТУ-ң 80 жылдығына арналған
«ҚАЗАҚСТАН-2050» СТРАТЕГИЯСЫН ІСКЕ АСЫРУДАҒЫ
ЖАС ҒАЛЫМДАРДЫҢ ОРНЫ МЕН РӨЛІ»
Халықаралық Сәтбаев оқуларының
ЕҢБЕКТЕРІ
III том
ТРУДЫ
Международных Сатпаевских чтений
«РОЛЬ И МЕСТО МОЛОДЫХ УЧЕНЫХ В РЕАЛИЗАЦИИ СТРАТЕГИИ «КАЗАХСТАН-2050»,
посвященных 80-летию КазНТУ имени К.И. Сатпаева
III том
PROCEEDINGS
of the International Satpayev’s readings
«ROLE AND POSITION OF YOUNG SCIENTISTS IN IMPLEMENTATION
OF «KAZAKHSTAN 2050» STRATEGY»,
devoted to celebration of 80
th
anniversary
of Kazakh National Technical University named after K.I. Satpayev
III volume
АЛМАТЫ 2014 ALMATY
УДК 001 (063)
ББК 72
Қ 38
Главный редактор: Адилов Ж.М., академик
Редакционная коллегия
Кульдеев Е.И., Жусупбеков С.С., Жунусова Г.Ж., Сапаров А.К., Кумеков С.Е., Абдыкаппарова С.Б.,
Дюсембаев И.Н., Ахметов Б.С., Турдалиев А.Т., Бердибаев Р.Ш., Рысбеков К.Б., Бесимбаев Е.Т.
Қ 38 Қ.И.Сәтбаев атындағы ҚазҰТУ-ң 80 жылдығына арналған «Қазақстан 2050 стратегиясын іске асырудағы жас
ғалымдардың орны мен рөлі» халықаралық Сәтбаев оқуларының еңбектері – Алматы, ҚазҰТУ 2014 ж.
III Том =Труды Международных Сатпаевских чтений «Роль и место молодых ученых в реализации
стратегии «Ка-захстан-2050», посвященные 80-летию КазНТУ имени К.И. Сатпаева – Алматы: КазНТУ
2014., Том
III =Proceedings International satpayev’s readings « Role and position of young scientists in
implementation of «ka-zakhstan 2050» strategy, devoted to 80th anniversary of KazNTU named after K.I. Satpayev,
2014 Almaty,
III volume/бас ред. Ж.М. Адилов. –Алматы: ҚазҰТУ, 2014. – қазақша, орысша, ағылшынша.
ISBN 978-601-228-657-1
ISBN 978-601-228-660-1
III том. 662 б.
Том III. 662 с.
Volume III. 662 р.
В книгу включены доклады представленные на Международные Сатпаевские чтения «Роль и место
молодых ученых в реализации стратегии «Казахстан-2050», посвященные 80-летию КазНТУ имени
К.И. Сатпаева. В них нашли отражение задачи, обозначенные в Послании Президента РК Н.А. Назарбаева
Стра-тегия «Казахстанский путь – 2050: Единая цель, единые интересы, единое будущее»:
- Подготовка инженерных кадров и проблемы инженерного образования Республики Казахстан;
- Новые технологии энергосбережения и использования возобновляемых источников энергии;
- Ресурсоэффективные технологии и техника для рационального природопользования и глубокой
переработки сырья и продукции;
-
Новые
информационные
и
телекоммуникационные
технологии,
технологии
создания
интеллектуальных систем;
- Инновационные технологии снижения материало-, капитало- и энергоемкости в машиностроении,
строительстве и жилищно-коммунальном хозяйстве;
- Социально-гуманитарные эффекты ресурсосберегающей экономики.
Труды данной конференции могут быть полезны преподавателям высших учебных заведений, докто-
рантам, магистрантам, студентам, работникам науки и производства.
УДК 001 (063)
ББК 72
ISBN 978-601-228-657-1 (т.3)
ISBN 978-601-228-660-1 (общ.)
© Казахский национальный технический
университет имени К.И. Сатпаева, 2014
3
СЕКЦИЯ
НОВЫЕ ИНФОРМАЦИОННЫЕ И ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ,
ТЕХНОЛОГИИ СОЗДАНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ
Подсекция
Автоматизация и робототехнические системы
Aldibekova Aitkul PhD student
1
, Bekmurza Aitchanov
1
Janusz Partyka
2
1
Kazakh national technical university after K. I. Satpaev, Kazakhstan, Almaty
E-mail: aitkul_86@mail.ru
2
Lublin University of Technology, str Nadbystzycka 38a, 20-618 Lublin, Poland.
E-mail:j.partyka@pollub.pl
A DYNAMIC PULSE-FREQUENCY MODULATOR FOR CONTROLLING THE PROCESS OF
PRODUCTION AND QUALITY OF MILK PRODUCTS
Abstract. This article is devoted to modeling of the automated process of production and quality control system
of milk products with dynamic pulse-frequency modulator which filter is implemented as an aperiodic element of the 2-
order (DPFM with FAE).
There were obtained equations of DPFM with FAE of the 2-order for management regime parameters controlling
of milk production. The structural model of DPFM with FAE of the 2-order was constructed which processes are iden-
tical to the processes in real modulator.
The structural model of the modulator obtained due to this work provides the basis for constructing of mathemat-
ical models of dynamic pulse-frequency control system of production and quality of milk products, which allow further
development of the different in accuracy and complexity computational procedures for analysis and synthesis methods
of the considered in the article class of systems of milk production of pulse-frequency control systems.
Key words: automated control system, dynamic pulse-frequency modulator, Voltaire model, filter as an aperiod-
ic element of the 2-order.
During the usage in ACS of primary transducers based on different physical phenomena that improve
the accuracy and quality of the recorded input and output parameters, it is necessary to develop better control
elements.
There is used the method for conversion of the equivalent DPFM with FAE of the 2-order of nonlinear
system called further as structural model.
Dynamic pulse-frequency automatic control system (DPFACS) of dairy production represent a closed
system consisting of dynamic pulse-frequency modulator with a filter in the form of an aperiodic element of
the 2-order (DPFM with FAE) and the represented continuous part (RCP), the block diagram of which is
presented in Figure 1 [1].
Figure 1. Structural model of DPFACS of dairy production
z (t)
DPFM
f(t)
x (t)
RCP
у
•
(t)
μ(t)
4
At the entrance of the control system for dairy production there operates a stationary random process f
(t). The direct chain consists of pulse and represented continuous parts. Pulse part is presented by DPFM, the
transformative process of the error x (t) in the frequency-modulated
-pulse sequence of Dirac
)
t
(
y
.
Represented continuous part RCP consists of serial connection of the managed object with delay, ac-
tuating mechanism (AM) and forming element (FE) defining a desired shape for control pulses. Object with
delay exposed to external white noise
)
t
(
. Generally in RCP it is characterized as a nonlinear dynamical
system with random parameters and represented to certain functional equations of the following form [2]:
]
t
t
/
)
(
g
),
(
z
,
,
[
H
)
t
(
z
0
0
, (1)
where H – continuous nonlinear functional; parameter
characterizes the randomness of the func-
tional parameters H;
)
t
(
g
- sequence of the random control pulses of the given form,
0
- time of the delay
of a managed control object.
DPFM with FAE of the 2-order is a sequential order of the filter F and pulse device PD. In the filter F
there is carried out a dynamic transformation of a continuous signal
)
t
(
x
into a signal
)
t
(
y
, and a pulse
device PD generates a single
-pulse at the time when
)
t
(
y
reaches the parameter ±
and provides the
resets of all energy storage devices that are included in the F [3].
Let us assume that at some point
n
t
on the output of PD there was appeared n pulse. Then the mo-
ment of occurrence of
1
n
t
(n+1) pulse due to the properties of the object with delay will be determined as
follows:
0
t
t
1
n
1
n
1
n
1
n
0
n
d
)
(
x
)
t
(
w
)
0
t
(
y
(2)
where
1
n
)
0
t
(
y
1
n
(3)
)}
p
(
W
{
L
)
t
(
w
1
– weight function of this transformation;
)
p
(
W
– transfer function of the fil-
ter F,
m
– parameter of the dynamic pulse-frequency modulator, taking into account the the delay effect of
a controlled object (
m
0
) [1].
The structural model of DPFM with FAE of the 2-order can be formed by the closed nonlinear system
block diagram of which is shown in figure 2 [2].
Figure 2. Nonlinear equivalent system
It includes a nonlinear filter that is characterized by an operator
]
t
t
/
)
(
y
),
(
x
,
[
A
0
m
,
relay hysteresis nonlinear element
)
u
(
(fig.3) with the limit
and a differentiating element with a trans-
fer function
p
)
p
(
W
д
[1].
A[
x,у*]
,
m
)
u
(
p
x(t)
u(t)
v(t)
y
)
t
(
)
5
Figure 3. Characteristics of the relay hysteresis element
The task is to determine the form of the nonlinear operator A, in which the closed system shown in
Figure 2, generates the same sequence of pulses as DPFM during the control of the objects with delay and
which is described by equations (2) and (3).
The construction of such nonlinear operator A will be considered for DPFM with FAE of the 2-order
used to control dairy production objects.
DPFM whose filter is implemented as an aperiodic element of the 2-level is characterized by the trans-
fer function:
p
p
c
p
W
2
)
(
(4)
If there are real and negative roots of the characteristic polynomial in the filter modulator, then the
specified function can be decomposed as:
)
1
1
(
)
(
1
2
1
2
p
p
k
p
W
(5)
Further for system simplicity we denote
1
2
k
=k
μ.
In accordance with the equations (2) and (3) for the modified DPFM with the filter of the aperiodic
element of the 2-order the moments of occurrence
1
n
t
of the pulse are determined from the equation:
0
1
1
1
0
1
2
1
1
1
)
(
))
(
exp(
)
(
))
(
exp(
)
0
(
n
m
n
n
m
n
t
t
n
n
t
t
n
n
d
x
t
k
d
x
t
k
t
y
(6)
где
0
1
1
1
0
1
2
1
1
1
)
(
))
(
exp(
)
(
))
(
exp(
n
m
n
n
m
n
t
t
n
n
t
t
n
n
d
x
t
k
d
x
t
k
k
μ
- amplification factor of the aperiodic element of the 2-order.
Let us consider the arbitrary moment of time
n
t
. Let the output signal at this time is equal to
)
0
t
(
y
n
.
Then for the moments of time
n
t
t
t
t
t
n
t
t
t
t
t
n
t
t
n
n
n
n
d
x
e
k
t
y
e
d
x
e
k
t
y
e
t
y
)
(
)
0
(
)
(
)
0
(
)
(
)
(
)
(
)
(
)
(
1
1
2
2
(7)
φ(u)
u
6
where
)
t
(
y
– output of the filter with the initial condition
)
0
t
(
y
n
.
The equation (7) will be following:
0
)
(
0
)
(
)
(
0
)
(
0
)
(
)
(
1
1
1
1
1
2
2
2
]
)
(
)
(
[
)
0
(
]
)
(
)
(
[
)
0
(
)
(
n
m
n
m
n
n
n
n
m
n
m
n
n
n
t
t
t
t
t
t
n
t
t
t
t
t
t
t
t
n
t
t
d
x
e
d
x
e
k
t
y
e
d
x
e
d
x
e
k
t
y
e
t
y
(8)
By comparing (6) and (8) it is seen that
)
t
(
y
=
)
t
(
y
, if
d
e
k
d
x
e
k
d
x
e
k
t
y
e
d
e
k
d
x
e
k
d
x
e
k
t
y
e
t
y
t
t
t
t
t
t
t
n
t
t
t
t
t
t
t
t
t
n
t
t
n
m
n
m
n
n
n
n
m
n
m
n
n
n
)
(
)
(
)]
(
)
(
[
)
0
(
)
(
)
(
)]
(
)
(
[
)
0
(
)
(
)
(
0
)
(
0
)
(
)
(
)
(
0
)
(
0
)
(
)
(
1
1
1
1
1
2
1
2
2
2
(9)
where
k
t
y
t
s
t
)
(
)
(
)
(
(10)
For forming the signal
)
t
(
let us present the product of two signals
)
t
(
x
)
t
(
)
t
(
, (11)
where
t
t
n
m
d
)
t
(
q
)
t
(
, (12)
р
)
p
exp(
1
L
)
t
(
q
m
1
m
– pulse response function of forming element of the 2-order level;
)
t
(
s
is connected with the output signal of the modulator
)
t
(
y
[2]:
)
0
t
t
(
)
t
(
s
n
(13)
Then, a structural model of the DPFM filter of the aperiodic element of the 2-order will be formed as a
closed nonlinear system (Fig.2).
Let us consider the transformation of the signal
)
t
(
u
, implementation in the relay hysteresis element
(RHE)
)
u
(
v
. (Fig.3).
If at some moment of time
0
t
n
the signal
)
t
(
u
is equal to
)
0
t
(
u
n
, then the next switch
moment
0
t
1
n
is determined by the equation
)
0
t
(
u
1
n
-
)
0
t
(
u
n
=
1
n
,
(14)
where
1
n
=
siqn
[
)
0
t
(
u
1
n
-
)
0
t
(
u
n
]. (15)
Under the conditions (14) and (15), there is the transferring of the signal
)
t
(
v
from the one to anoth-
er and the signal derivative
)
t
(
v
is determined by the equation
7
)
0
t
t
(
dt
)
t
(
dv
1
n
1
n
. (16)
By comparing of (8) and (13) we can conclude that the output pulse device PD
)
0
t
t
(
dt
)
t
(
dv
)
t
(
y
1
n
1
n
. (17)
Considering (17) and (13) the signal
)
t
(
s
can be formed as:
)
0
t
(
y
)
t
(
y
)
t
(
y
)
t
(
y
)
t
(
s
n
.
(18)
By comparing of (6), and (14), (15) it is seen that
)
0
t
(
u
)
t
(
u
)
t
(
y
n
,
0
t
t
0
t
1
n
n
(19)
Then for the signal
)
t
(
u
1
n
we will receive:
)
0
t
(
u
)
0
t
(
y
)
t
(
u
n
1
n
1
n
(20)
The block, which contain relay hysteresis element
)
u
(
v
and which is described by the equa-
tions (17)–(20), is named as pulse forming block (PFB). The structural model of FAE is shown on Figure 4.
By the simple transformations in [4] here is obtained an equivalent scheme of the pulse forming block PFB
(Fig. 4 b).
а)
б)
Figure 4. Pulse forming block of the DPFM models with FAE of the 2-order
The remaining part of the operator A, which is described by equations (8) - (13), is called as reset
block (RB). From the equations (8) - (13) it is seen that the problem of determining the structure of the block
reset RB leads to the formation of signals
)
t
(
and μ(t) [1].
Equations (8), (9), (10), (11), (12) describe the block reset RB [2]. The structural model of the mod-
ified RB is shown on Fig.9.
8
Figure 5. Reset block of the DPFM with FAE of the 2-order
The output signal
)
t
(
y
of the modified reset block is converted by the pulse forming block into the
instant
- pulses. Some pulses
)
t
(
y
,
sign and repetition period of which are determined by the sign and
repetition period of the signal continuity
)
t
(
y
, are the output pulses of the modulator, and the others
)
t
(
s
always go back to the RB at these moments.
Pulse forming block PFB of the structural model DPFM with FAE of the 2-order coincides with the
corresponding block of the DPFM structural model [2], ie it is universal for all kinds of DPFM.
Let us consider the reset block (Fig. 5). It can be seen from Fig. 5 that the structure of the modified re-
set block has an additional signal generating block
)
t
(
, described by the equations (11)–(12). The purpose
of this additional block is to form a signal which forcibly held the integrator output
)
t
(
y
in a neutral posi-
tion after the control pulse within the delay time of the object. The above features of the reset block RB lead
to changes in the properties of the system.
In the structural model of DPFM with FAE of the 2-order only the reset block RB [1] depends on the
properties of the filter in the modulator. In this connection, a procedure of constructing structural models of
other types of DPFM will differ from this procedure by the procedure of constructing the structure of the re-
set block.
9
жүктеу/скачать Достарыңызбен бөлісу: |