Ќазаќстан Республикасы білім жєне ѓылым министрлігі


Үзіліссіз функциялардың қасиеттері



бет40/49
Дата23.09.2022
өлшемі5,24 Mb.
#39964
түріОқулық
1   ...   36   37   38   39   40   41   42   43   ...   49
Байланысты:
ЭОМат талдау соны

3. Үзіліссіз функциялардың қасиеттері
Функциялардың суперпозициясының үзіліссіздігі туралы теорема негізінде қарастырылады.
5-мысал. Функцияны үзіліссіздікке зерттеу керек
.
Шешуі. Бөлімдегі әрбір қосылғыш х- тің әрбір мәнінде үзіліссіз функция, себебі екі үзіліссіз функцияның көбейтіндісі. Екі үзіліссіз функцияның қосындысы үзіліссіз функция. Бөлшектің бөлімі де х- тің әрбір мәнінде үзіліссіз функция, себебі екі үзіліссіз (х3 + 1) және sin3 х функциядарының көбейтіндісі. Бөлім х= - 1 және х = п (n = 0; ±1; ± 2; ...) мәндерінде 0- ге айналады. Ендеше, қарастырып отырған функция х=-1 және х = п нүктелерінен басқа барлық мәндерде үзіліссіз болады.
6-мысал. Функцияны үзіліссіздікке зерттеп, графигін салу керек .
Шешуі. х≤-1 мәндерінде функция анықталмаған. <1 мәндерінде , arctg xn0, осыдан . мәнінде ; х>1 мәндерінде және arctgxn, ал Функцияның графигі 7-суретте кескінделген.

7-сурет



6- тақырып
Дифференциалдық есептеу. Туынды. Дифференциал


1. Туындының анықтамасын қолданып туынды табу
1-мысал. Туындының анықтамасын қолданып, функциясының туындысын табу керек.
Шешуі. Туындының анықтамасын қолданып, келесіні аламыз:
,

.
2-мысал. Туындының анықтамасын қолданып, табу керек, егер
.
Шешуі.

.
2. Функцияның біржақты туындылары


3-мысал.

функциясының нүктесінде туындысы болмайтынын дәлелдеу керек.
Шешуі.
, .
Сол жақты және оң жақты туындылар әртүрлі, сондықтан функцияның нүктесінде туындысы болмайды.


Достарыңызбен бөлісу:
1   ...   36   37   38   39   40   41   42   43   ...   49




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет