Басылым: екінші


Механикалық жүйенің қозғалыс мөлшері



бет11/18
Дата26.12.2023
өлшемі0,87 Mb.
#144109
1   ...   7   8   9   10   11   12   13   14   ...   18
Байланысты:
УМКД СиС(Динамика)

4.3.3 Механикалық жүйенің қозғалыс мөлшері

Біз нүктенің қозғалыс мөлшері оның массасы мен жылдамдық векторының көбейтіндісіне тең екенін білеміз. Механикалық жүйенің қозғалыс мөлшері деп жүйедегі барлық нүктелердің қозғалыс мөлшерлерінің геометриялық қосындысына тең векторын айтады:


. (4.3.5)
болғандықтан, (4.3.5) өрнегін былай түрлендіруге болады:
,
мұндағы – жүйенің k-нөмірлі нүктесінің инерциалдық санақ жүйесінің бас нүктесінен жүргізілген радиус-векторы.
Массалар центрінің радиус-векторының өрнегінен екенін көреміз. Сонымен, келесі өрнекті аламыз:

немесе – жүйенің массалар центрінің жылдамдығы екенін ескерсек мынаны аламыз:
, (4.3.6)
демек, жүйенің қозғалыс мөлшері бүкіл жүйе массасы мен оның массалар центрі жылдамдығының көбейтіндісіне тең.
Егер қозғалыстағы дененің массалар центрі қозғалмаса, мысалы дене массалар центрі арқылы өтетін өстің бойымен айналса, (4.3.6) өрнегінен дененің қозғалыс мөлшері нөлге тең екенін көреміз. Ал егер дене қозғалысы күрделі болса, онда қозғалыс мөлшерінің шамасы оның массалар центрінен өтетін өсті айналуына тәуелді болмайды. Мысалы, массалар центрін қалай айналса да, домалап бара жатқан дөңгелек үшін .
Сонымен, механикалық жүйенің қозғалыс мөлшері оның массалар центрімен бірге жасайтын ілгерілемелі қозғалысын сипаттайды екен.


4.3.4 Жүйенің қозғалыс мөлшерінің өзгеруі туралы теорема

n материялық нүктеден тұратын механикалық жүйені қарастырайық. Нүктелердің үдеуі жылдамдық векторларының бірінші туындысы екенін ескеріп ( ), жүйе қозғалысының (4.3.1) дифференциалдық теңдеулерін қайтадан жазайық:



енді барлық теңдеулерді қосайық:
.
Соңғы теңдеудің сол жағын түрлендіріп, жүйенің ішкі күштерінің қасиетін ескерсек ( ) мынаны аламыз:
.
Бұл теңдеудегі -ны (4.3.5)-ке сәйкес арқылы алмастырсақ жүйенің қозғалыс мөлшерінің өзгеруі туралы теореманың дифференциалдық түрін аламыз:
. (4.3.7)
Теорема: механикалық жүйенің қозғалыс мөлшері векторының уақыт бойынша туындысы жүйеге әсер ететін барлық сыртқы күштердің геометриялық қосындысына тең.
(4.3.7) теңдеуі декарттық координата жүйесінің өстеріне проекцияланған үш скаляр теңдеуге пара-пар:
(4.3.8)
Осы теореманы басқа түрде жазуға болады. Ол үшін механикалық жүйенің бастапқы уақыттағы қозғалыс мөлшерін деп, ал уақыттағы қозғалыс мөлшерін деп белгілейік. (4.3.7) теңдеуінің екі жағын да -ға көбейтіп, интегралдайық:
.
Нәтижесінде мынаны аламыз:

немесе, оң жақтағы интегралдар сыртқы күштердің импульстері болғандықтан:
, (4.3.9)
(4.3.9) теңдеуі жүйенің қозғалыс мөлшерінің өзгеруі туралы теореманың интегралдық түрін береді: кез келген уақыт аралығындағы жүйенің қозғалыс мөлшерінің өзгеруі осы уақытта жүйеге әсер ететін барлық сыртқы күштердің импульстерінің геометриялық қосындысына тең.
Есеп шығарғанда (4.3.9) векторлық теңдеуді декарттық координата жүйесінің өстеріне проекциялау керек:
. (4.3.10)
Жүйенің қозғалыс мөлшерінің өзгеруі туралы теоремадан қозғалыс мөлшерінің сақталу заңдарын аламыз:



  1. Достарыңызбен бөлісу:
1   ...   7   8   9   10   11   12   13   14   ...   18




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет