Лупа және ондағы сәуле жолы. Лупа–шыныдан жасалған қосдөңес, қысқа фокусты жинағыш линза.Ол арқылы кішкентай нәрселердің бөлшектерін көре аламыз. Бұл үшін нәрсені оның линзасы мен фокусының арсына қояды. Сонда нәрсенің кескіні жалған, үлкейген және тура болады. Линза майда бөлшектері жақсы көрінетін нәрсенің үлкейтілген кескінін береді. Фокус аралығы азайған сайын линза көбірек үлкейтеді.Лупа 25 есе үлкейте алады.
Жарық толқындары Жарық табиғатына көзқарастың дамуы
Жарық табиғатына деген адамдардың көзқарасы ерте заманнан ақ қалыптаса бастаған. Осыдан екi жарым мың жыл бұрын Пифагор «әрбiр зат өзiнен аса ұсақ бөлшектер шығарады, ол бөлшектер адам көзiне жетiп, адам заттарды көредi» деп түсiндiрген. Көптеген ғасырлар бойы үстемдiк құрған осы пiкiрдi И.Ньютон одан әрi дамытты. Ол жарық бөлшектерiн корпускулалар деп атап, бұл бөлшектер инерция заңын қанағаттандырады деп есептедi. Бұлай деу тәжiрибеден байқалатын жарықтың түзу сызық бойымен таралу, шағылу заңдарын түсiндiруге мүмкiндiк беретiн. Одан әрi жарық жөнiнде жаңа тәжiрибелiк деректердiң жинақталу барысында интерференция және дифракция тәрiздi құбылыстар ашылды. Бұл құбылыстарды жарықтың корпускулалық қасиетi арқылы түсiндiру мүмкiн емес едi. Осымен байланысты ХIХ ғасырдың басында Х.Гюйгенс, Ю.Юнг және О.Френель тәрiздi ғалымдардың еңбектерiнде жарықтың толқындық теориясы ұсынылып, қалыптасты. Жарық жөнiндегi көптеген көкейтестi мәселелердiң шешiмi тек Максвелл ойлап тапқан электромагниттiк өрiстiң теориясынан кейiн ғана табылды. Бұл теориядан жарық –толқын ұзындығы белгiлi бiр аралықта жатқан электромагниттiк толқындар екендiгi шығатын. Жарықтың табиғатын түсiнуде оның жылдамдығының шектi екендiгiн анықтаудың маңызы зор болды. Жарық жылдамдығын алғаш рет ХVII ғасырдың аяғында О.Ремер өлшеген болатын. Ремер әдiсi Юпитер планетасының серiгiнiң қозғалысын бақылауға негiзделген.
Жарықтың түзу сызық бойымен таралу заңы Біртекті мөлдір ортада жарық түзу сызықты таралады. Тек ол кішкене саңылаудан өткен, сонымен қатар сәулелер шоғырының алдында аз мөлдір емес кедергі кездескен жағдайда бұл заң орындалмайды. Бұл жағдайларда дифракция құбылысы байқалады. Дифракция геометриялық оптикада қарастырылмайды.
Жарық шоғының тәуелсіздік заңы Күрделі жарықтық ағында жарық шоғырлары бір-бірімен тәуелсіз таралады. Бір нүктеде кездесетін шоғырлар қосылады. Тек интерференция құбылысы кезінде, яғни екі шоғыр ортақ сәуле шығару көзінен шығып, бірдей жол жүріп, белгілі бір нүктеге әр түрлі фазамен келгенде бұл заң орындалмайды.
Жарықтың шағылысу заңы. Жарықтың сыну заңы. Толық шағылу құбылысы
Тығыздығы өзгеретiн ортада тараған жарық өзiнiң түзусызықты қалыпынан ауытқып, таралу бағытын өзгертедi. Егер тығыздықтың мәнi екi ортаның шекарасында күрт өзгеретiн болса, онда бұл жерде жарықтың шағылысу және сыну құбылыстары байқалады. Мұндай орталардағы жарықтың таралу бағытын әдетте түсу, шағылу және сыну бұрыштары арқылы анықтайды.
Түсу бұрышы деп–түскен сәуле мен түсу нүктесiне тұрғызылған перпендикулярдың арасындағы α бұрышын айтады. Сәйкес шағылу бұрышы α′ – шағылған сәуле мен осы перпендикулярдың, ал сыну
бұрышы β – сынған сәуле мен осы перпендикулярдың арасындағы бұрыштар (6-сурет).
Жарықтың шағылу заңы былай дейдi : Түскен сәуле, шағылған сәуле және түсу нүктесiне тұрғызылған перпендикуляр бiр жазықтықта жатады және түсу бұрышы шағылу бұрышына тең болады, яғни α=α′.
Жарықтың сыну заңын тұжырымдамастан бұрын ортаның сыну көрсеткiшi ұғымын енгiзелiк. Ортаның абсолют сыну көрсеткiшi–деп жарықтың вакумдағы жылдамдығының оның осы ортадағы жылдамдығына қатынасын айтады, яғни
Егер жарықтың сыну құбылысы вакум мен ортаның шекарасында емес, қандай да бiр екi оптикалық ортаның шекарасында болса, онда екiншi ортаның бiрiншi ортаға қатысты салыстырмалы сыну көрсеткiшi n21 деп жарықтың бiрiншi ортадағы жылдамдығының екiншi ортадағы жылдамдығына қатынасына тең мына шаманы айтады:
Жарықтың сыну заңы былай дейдi: Түскен сәуле, сынған сәуле және түсу нүктесiне тұрғызылған перпендикуляр бiр жазықтықта жатады және түсу бұрышының синусының сыну бұрышының синусына қатынасы тұрақты шама, ол екi ортаның салыстырмалы сыну көрсеткiшiне тең болады. Ортаның абсолют сыну көрсеткiшi оның оптикалық тығыздығымен байланысты. Оптикалық тығыздықтың мәнi артқан сайын сыну көрсеткiшiнiң мәнi де артады. Егер жарық оптикалық тығыздығы кемдеу ортадан оптикалық тығыздығы артықтау ортаға өтсе, онда n2>n1, немесе n21>1. Ал бұдан sin α > sin β екендiгi шығады, яғни түсу бұрышы сыну бұрышынан әрқашанда үлкен.
Ал, керiсiнше, жарық оптикалық тығызырақ ортадан оптикалық тығыздығы кемдеу ортаға өтсе, онда сәйкес sin α < sin β, немесе α < β, яғни сыну бұрышы түсу бұрышынан үлкен. Бұл жағдайда егер түсу бұрышын бiртiндеп арттыра бастасақ, онда сыну бұрышы да арта отырып, α – ның қандай да бiр α шек –ге тең мәнiнде ол 900-қа тең болады. Ал ендi α-ның мәнiн одан да әрi арттыратын болсақ, онда сынған сәуле екiншi ортаға өтпей сол бiрiншi ортада қалып қояды. Осы құбылысты толық iшкi шағылу құбылысы деп атайды. Шағылу және сыну заңдарының ерекшелiктерiн мына жерден көруге болады.