Транзистор n-p-n
|
Транзистор p-n-p
|
UБЭ, В
|
UБК, В
|
UЭБ, В
|
UКБ, В
|
0
|
0
|
0
|
0
|
0
|
1
|
0,6
|
0,6
|
0,67
|
0,67
|
2
|
0,6
|
0,65
|
0,69
|
0,69
|
4
|
0,6
|
0,68
|
0,72
|
0,71
|
8
|
0,7
|
0,71
|
0,74
|
0,73
|
14
|
0,7
|
0,74
|
0,76
|
0,75
|
Рис. 4.1.3
Вопрос 1: Каковы общие свойства обоих p-n переходов транзисторов двух типов?
Ответ: ................................
Вопрос 2: Каковы отличия p-n переходов в двух типах транзисторов?
Ответ: ..............................
4.2. Распределение тока в транзисторе и управляющий эффект тока базы
4.2.1. Общие сведения
В транзисторе p-n-p типа (рис. 4.2.1) ток эмиттера к коллектору через базу обусловлен неосновными для базы носителями заряда – дырками. При положительном направлении напряжения UЭБ эмиттерный p-n переход открывается, и дырки из эмиттера проникают в область базы. Часть из них уходит к источнику напряжения UЭБ, а другая часть достигает коллектора. Возникает так называемый транзитный тока от эмиттера к коллектору. Он резко возрастает с увеличением UЭБ и тока базы.
В транзисторе n-p-n типа (рис. 4.2.1б) транзитный ток через базу обусловлен также неосновными для нее носителями заряда – электронами. Там они появляются из эмиттера, если к эмиттерному p-n переходу прикладывается напряжение UБЭ, полярность которого показана на рис. 4.2.1б.
Рис. 4.2.1
Токи эмиттера, коллектора и базы связаны между собой уравнением первого закона Кирхгофа:
IК = IЭ – IБ.
Обычно ток базы существенно меньше IК и IЭ, но от него сильно зависит как IК, так и IЭ. Отношение приращения тока коллектора к приращению тока базы называется коэффициентом усиления по току:
b = DIК ¤ DIБ.
Он может иметь значения от нескольких десятков до нескольких сотен. Поэтому с помощью сравнительно малого тока базы можно регулировать относительно большие токи коллектора (и эмиттера).
4.2.2. Экспериментальная часть
Задание
Исследовать влияние тока базы на вольтамперную характеристику IК(UЭK) для n-p-n транзистора с помощью осциллографа.
Порядок выполнения эксперимента
Соберите цепь согласно схеме (рис. 4.2.2). В этой цепи в качестве источника синусоидального напряжения используется линейное напряжение трехфазного генератора, а диод включен для исключения обратного напряжения на транзисторе. Приборы А1 и V0 – входы коннектора, служащие для вывода тока IК и напряжения UKЭ на виртуальный осциллограф. Миллиамперметр А служит для измерения тока базы и может быть как мультиметром, так и виртуальным прибором.
Рис. 4.2.2
Включите виртуальные приборы А1, V0 и виртуальный осциллограф. На осциллографе установите режим XY. В качестве входа Y выберите ток коллектора, т.е. А1 (по умолчанию это канал 3). В качестве входа Х выберите UKЭ, т.е. V0 (по умолчанию – канал 1).
Установите регулятор постоянного напряжения на ноль и зафиксируйте кнопкой 1 осциллографа масштаб по напряжению. Затем установите регулятор постоянного напряжения на максимум и зафиксируйте кнопкой 3 осциллографа масштаб тока. Теперь при регулировании тока базы масштабы по осям осциллографа автоматически изменяться не будут.
Регулируя тока базы от 0 до максимального значения и наоборот, пронаблюдайте за изменением кривой IК(UKЭ) на осциллографе. При нескольких значениях тока базы (включая нулевое и максимальное) перерисуйте кривую IК(UKЭ) с осциллографа на рис. 4.2.2. Не забудьте указать масштабы по осям и токи базы для каждой кривой.
На семействе кривых IК(UKЭ) выберите какое-либо постоянное напряжение UKЭ (например, 5 В) и на рис. 4.2.3 постройте зависимость IК(IБ) для этого значения напряжения UKЭ. Рассчитайте и на этом же рисунке постройте график b(IБ)= DIК ¤ DIБ. Нанесите шкалы по осям.
Рис. 4.2.2.
Рис. 4.2.3.
Достарыңызбен бөлісу: |