Информатика



бет7/9
Дата07.01.2022
өлшемі1,31 Mb.
#18929
1   2   3   4   5   6   7   8   9
Байланысты:
Акпаратты кодтау 1курс

Вавилондық санау жүйесі

  • Алғашқа позициялық санау жүйесі ертедегі Вавилонда (б.ғ. д. 2000 ж.) құрылған, ол негізі 60-қа тең алпыстық санау жүйесі болған. Айта кететіні, уақытты біз осы кезге дейін негізі 60-қа тең өлшеммен есептейміз.Сол сияқты шеңберді 360 бөлікке бөлеміз.
  • алпыстық санау жүйесі

Негіздері q=2, q=8 және q=16 болатын санау жүйелері арасындағы байланыс екі теорема арқылы анықталады.

Теорема 1. Негізі q=2n болатын санау жүйесінде бүтін екілік санды жазу үшін, берілген екілік санды оңнан солға қарай (ең кіші разрядынан үлкеніне қарай) әрбірінде n цифр болатындай топтарға (грани) бөлу керек. Одан кейін осы топтың әрқайсысын n разрядты екілік сан ретінде қабылдап оны негізі q=2n болатын санау жүйесінің цифры етіп жазу.

  • Мысал: 101100001000110010 екілік санын оған сәйкес келетін 8-дік санау жүйесінің (басқаша айтқанда негізі q = 23 ) санымен ауыстыру.
  • 101 100 001 000 110 010
  • 5 4 1 0 6 2
  • Сонымен, екілік 101 100 001 000 110 010 саны
  • сегіздік санау жүйесінде 541 062


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет