Лемма 1. Пространство
]
[
A банахово и является промежуточным относительно
пары A . Функтор
C
представляет собой точный интерполяционный функтор типа
.
Лемма 2. При
1
0
имеют место вложения
.
,
]
[
1
,
A
A
A
Лемма 3. (о связи между методами комплексной и вещественной интерполяции) Если
1
0
1
0
)
1
(
,
1
0
и
p
0
, то
.
,
,
,
]
[
]
[
1
0
p
p
A
A
A
Если
1
,
0
,
1
i
p
i
и
,
1
1
1
0
p
p
p
то
.
,
,
]
[
,
,
1
1
0
0
p
p
p
A
A
A
Для конечномерных пространств Лоренца справедлива следующая теорема:
Теорема 1. Пусть
,
,
0
,
1
1
0
1
0
q
q
p
p
.
1
0
,
1
1
,
1
1
1
0
1
0
q
q
q
p
p
p
Тогда имеет место равенство
.
,
,
]
[
,
,
1
1
0
0
N
q
p
N
q
p
N
q
p
l
l
l
Это равенство понимается в смысле эквивалентности норм с константами, не зависящими
от
.
N
Для конечномерных сетевых пространств получаем следующую теорему.
Теорема 2. Пусть
.
1
0
,
1
1
,
1
1
,
,
0
,
1
1
0
1
0
1
0
1
0
q
q
q
p
p
p
q
q
p
p
M -
множество всех отрезков из множества
}.
,...,
2
,
1
{
N
Тогда имеет место равенство
).
(
)
(
),
(
,
]
[
,
,
1
1
0
0
M
n
M
n
M
n
N
q
p
N
q
p
N
q
p
Это равенство понимается в смысле эквивалентности норм с константами, не зависящими
от
.
N
Литература
1.
Nursultanov E.D. Interpolation properties of some anisotropic spaces and Hardy-Littlwood type
inequalities// {East J. Approx.}- 1998.- Vol. 4, N2.-P. 243-275.
45
2.
Трибель Х. Теория интерполяции. Функциональные пространства. Дифференциальные
операторы.- М., 1988. - 550 с.
3.
Брудный Ю.А., Крейн С.Г., Семенов Е.М. Интерполяция линейных операторов.// Итоги
науки и техники. - М.,- 1986. -Т. 24. -С. 3-163.
4.
Берг Й., Лефстрем Й. Интерполяционные пространства. - М., 1980.264 с.
УДК 50
MATHEMATICS IS THE QUEEN OF SCIENCES
ShaimerdenovaGauhar
Gumilyov Eurasian National University, Astana
Scientific teacher
– Hamzina A.
In the 17th century, the great scientist and mathematician Galileo Galilei noted that the book
of nature "cannot be understood unless one first learns to comprehend the language and read the
characters in which it is written. It is written in the language of mathematics, and its characters are
triangles, circles, and other geometric figures, without which it is not humanly possible to
understand a single word of it." [1;15] The history of mathematics concerns one of the most
magnificent, surprising, and powerful of all human achievements. In the early 19th century, the
noted German mathematician Carl Friedrich Gauss called mathematics the "queen of the sciences"
[2] because it was so successful at uncovering the nature of physical reality. Gauss's observation is
even more accurate in today's age of quantum physics, string theory, chaos theory, information
technology, and other mathematics-intensive disciplines that have transformed the way we
understand and deal with the world.
At first, let's answer for a question ―What is mathematics?‖ . ―Mathematics‖ is a Greek
word, and, by origin or etymologically, it means ―something that must be learnt or understood‖,
perhaps ―acquired knowledge‖ or ―general knowledge‖. The word ―maths‖ is a contraction of all
these phrases. Among all the sciences maths is distinguished for its universality. It is impossible to
give a concise and readily acceptable definition of maths as it is a multifield subject. Maths in the
broad sense of the word is a peculiar form of the general process of human knowledge of the real
world. Maths deals with the space forms and quantity relations abstracted from the physical world.
Maths is the science dealing primarily with what can be obtained by reasoning alone. One of the
foremost reasons given for the study of maths is to use a common phrase, that ―maths is the
language of sciences‖. This is not meant to imply that maths is useful only to those who specialize
in science. No, it implies that even a layman must know something about the foundations, the scope
and the basic role played by maths in our scientific age. The language of maths consists mostly of
signs and symbols, and, in a sense, is an unspoken language. There can be no more universal or
more simple language, it is the same throughout the civilized world, through the people of each
country translate it into their own particular spoken language.
Mathematics is used throughout the world as an essential tool in many fields,
including natural science, engineering, medicine, and the social sciences. Applied mathematics, the
branch of mathematics concerned with application of mathematical knowledge to other fields,
inspires and makes use of new mathematical discoveries and sometimes leads to the development of
entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also
engage in pure mathematics or mathematics for its own sake, without having any application in
mind, although practical applications for what began as pure mathematics are often discovered.
Mathematical thinking is important for all members of a modern society as a habit of mind
for its use in the workplace, business and finance, and for personal decision-making. Mathematics is
Fundamental to national prosperity in providing tools for understanding science, engineering,
technology and economics. It is essential in public decision-making and for participation in the
46
knowledge economy. Mathematics equips pupils with Uniquely Powerful ways to describe, analyze
and change the world. It can stimulate moments of pleasure and wonder for all pupils When They
solve a problem for the first time, discover a more elegant solution, or notice hidden connections.
Mathematics plays an important part in our everyday lives whether we choose to
acknowledge the fact or not. Many of our daily activities are done without thought of the underlying
mathematics. We not only use mathematics for the obvious tasks like balancing accounts, telling
time, and percentage rate calculation; but we also use math in esoteric ways every time we make
use a GPS locator, visit a web site, view digital pictures, and even watch DVDs! Think about the
nuances that happen every time you make a sound on a cellular phone. Essentially (and most
simplistically), the microphone converts the analog signal of your sound wave (which can be
represented as a continuous mathematical function) into a digital/binary representation of bytes.
After transmission and reception, the bytes have to be processed through a digital to analog
conversion function to reconstruct the sound wave to be output by the other phone's speaker. The
mathematical conversions make this possible. Many of the mundane things we do (especially when
computers are involved) require some usage of mathematics. In the computer industry, two of the
most ubiquitous operations are data-encryption and data-compression. These operations can't be
done without mathematical manipulation of the input data set. Merely clicking the "Log In" button
on a web site doesn't make you secure by itself, it takes math!
In fact, the computer industry in general has mathematicians to thank. Charles Babbage—an
English mathematician—designed both the Difference Engine and the Analytical Engine in the
early 19
th
century. Both devices were essentially developed to be mechanical computers. Lady Ada
Byron—a mathematical enthusiast and the namesake of the Ada programming language—is
credited with creating the first computer program (which was designed to compute Bernoulli
numbers on Babbage's Analytical Engine). Alan Turing—an English mathematician and
cryptanalyst—designed electro-mechanical machines to break German cryptography during World
War II and designed the "Automatic Computing Engine" in 1946. The list of contributions by
mathematicians to the computing industry continues still today.[4]
―The Queen of the Sciences” is a wonderful subject. The importance of maths which will be
quality math help for students are as follows:
1. Maths is a tool for the subjects like physics and chemistry in higher secondary and above.
2. Nothing can be done in Architecture and Designing without the knowledge of Maths.
3. It enables students to interact with numbers.
4. Buiseness is all about making money.
5. Auditors must be avoided as they can cheat you very easily if you are a duffer in maths.
6. All the constructions on earth require mathematics.
Mathematics and other sciences. Essentially application field of a mathematical method
isn't restricted: all types of driving of a matter can be studied mathematically. However the role and
value of a mathematical method in various cases are various. No certain mathematical circuit settles
all concreteness of the valid phenomena, therefore process of knowledge specific flows always in
struggle of two tendencies; on the one hand, separation of the form of the studied phenomena and
the logical analysis of this form, on the other hand, openings of the moments which are not laying
down in installed forms, and passage to reviewing of new forms, and is fuller than more floppy
enveloping the phenomena. If difficulties of learning of any circle of the phenomena consist in
realization of the second tendency if each new step of research is connected to engaging to
reviewing qualitatively the new sides of the phenomena the mathematical method recedes on a
background; In this case the dialectic analysis of all concreteness of the phenomenon can be
blacked only out a mathematical schematization. If, on the contrary, rather simple and steady main
forms of the studied phenomena envelop these phenomena with the big accuracy and completeness,
but already within these fixed forms arise difficult enough and the challenges demanding special
mathematical research, in particular creations of special symbolical record and special algorithm for
the decision we get to sphere of domination of a mathematical method.
47
Common example of an empery of a mathematical method is the celestial mechanics, in
particular the doctrine about driving of planets. The universal gravitation law having very simple
mathematical expression almost completely defines a circle of the phenomena studied here. Except
for the theory of driving of the Moon, lawfully, within accuracy of observations accessible to us,
neglect the form and in the sizes of celestial bodies - their changeover by "the material points". But
the decision of the task of driving arising here n the material points under the influence of
gravitational forces already in a case n = 3 presents enormous difficulties. But each result received
by means of the mathematical analysis of the accepted circuit of the phenomenon, with huge
accuracy is carried out actually: logically very simple circuit well reflects the selected circle of the
phenomena, and all difficulties consist in extraction of mathematical consequences from the
accepted circuit.
To passage from mechanics to physics there is no yet a noticeable reduction of a role of a
mathematical method; however difficulties of its application considerably increase. There is no
almost an area of the physics which is not demanding the use of rather developed mathematical
apparatus, but is frequent the main difficulty of research consists not in development of the
mathematical theory, and in a choice of premises for mathematical handling and in interpretation of
the results received by a mathematical way.
On an example of some physical theories it is possible to watch ability of a mathematical
method to envelop and the process of passage of knowledge of the validity from one step on
following, higher and it is qualitative the new. As the classical sample the ratio between the
macroscopic diffusion theory assuming diffusing substance arranged continuously, and the
statistical diffusion theory, starting with reviewing of driving of separate particles of diffusing
substance can serve. In the first theory the density of diffusing substance satisfies to the certain
equation with private derivatives. To finding of decisions of this differential equation at appropriate
edge and initial conditions learning of the various problems concerning diffusion also is reduced.
The continuous diffusion theory with very big accuracy transfers the valid course of the phenomena
as business goes about normal for us (macroscopic) space and temporal scales. However for small
parts of space (particles of diffusing substance containing only a small number) the concept of
density loses certain meaning. The statistical diffusion theory starts with reviewing of microscopic
casual relocation of diffusing particles under the influence of molecules of solvent substance. Exact
quantitative regularities of this microscopic relocation to us are unknown. However the
mathematical probability theory allows (from the general premises about smallness of relocation for
small time intervals and independence of relocation of a particle for two serial time intervals) to
receive certain quantitative consequences: to define (approximately) distribution laws of
probabilities for relocation of particles for the big (macroscopic) time intervals. As the number of
separate particles of diffusing substance is very great, distribution laws of probabilities for
relocation of separate particles result, in the assumption of independence of relocation of each
particle from others, to quite certain, not so casual regularities for relocation of diffusing substance
as a whole: to those differential equations on which the continuous theory is constructed. The
resulted example is typical enough in the sense that very often because of one circle of regularities
(in an example — laws of driving of separate particles of diffusing substance) happens formation of
another, is qualitative a new sort of regularities (in an example — differential equations of the
continuous diffusion theory) through means of statistics of the casual phenomena. In biological
sciences the mathematical method plays more subordinate role. The mathematical method gives
way to the immediate analysis of the phenomena in all their specific complexity in social and the
humanities. Application of a mathematical method in biological, social and the humanities is carried
out mainly through cybernetics Essential there is value mathematics for social disciplines (as well
as for biological sciences) in the form of a subsidiary science — the mathematical statistics. In the
final analysis of the social phenomena the moments of a qualitative originality of each historical
stage acquire so a leading position that the mathematical method often recedes on a background.
In conclusion, I want to finish my article with such fairy tale-legend. Very long time ago
there was a kingdom of sciences. The king was the Natural sciences, the queen of the kingdom was
48
the Mathematics, and the princess was the Literature. And many servants served for royal family.
Once the Queen has quarreled with the spouse: ―Ah, so, - she has exclaimed,- try to do without
me!‖ She has left in a huff, and has dashed away in other country. At first all have sighed with
simplification, but the present alarm has soon begun. It has appeared that the literature can't
enumerate head, a part and page in novels and poems. The natural sciences have lost count planets
in a galaxy, days, months and weeks in a year. The history can't install exact dates, event. The
geography can't calculate distance between cities. Nobody has managed to do without mathematics.
Then have sent messengers all over the world have discovered mathematics and have asked it to
return back in kingdoms of sciences. The queen of sciences has returned. And since then in sciences
it was established the order. This only a fairy tale-legend, but in it is a small element of truth.
Really, the mathematics has a crucial role in our life, and without it nobody can manage. The queen
of sciences controls all science.
Literature
1.
Шмутцер Э., Шютц В. Галилео Галилей. — М.: Мир, 1987. — 140 с.
2.
Бюлер В. Гаусс. Биографическое исследование. М.: Наука, 1989.
3.
The Oxford Dictionary of English Etymology, Oxford English Dictionary, sub "mathematics",
"mathematic"
4.
http://www.archonmagnus.com The article ―The Importance of Math‖ By: Gary Hammock
5.
Философия и история математики. Колмогоров А. Н., Математика, в книге: Большая
Советская энциклопедия, 2 изд., т. 26, М., 1954;
6.
Courant R., Harbert R. ―What is Mathematics?‖ New York, 1964.
7.
В.П. Дорожкина Английский язык для студентов математиков. Москва, 2006. с. 42-45.
УДК 50
РИСКОВАЯ СИТУАЦИЯ
Райспих Е.А.
Студент, Северо-Казахстанский государственный университет им. М. Козыбаева,
Петропавловск
Научный руководитель - ст. преподаватель Валеева М.Б.
Рассматривать риск можно с двух точек зрения: статически – как явление, вызванное
неблагоприятными изменениями внутренней и внешней среды предприятия и (или) их
сочетаниями, и динамически – как процесс разворачивания этих явлений в пространстве и
времени. Сам риск не может выступать объектом управления (нельзя управлять стоящим
автомобилем или выключенным компьютером). Он воспринимается как данность, как
фактор, учитываемый в ходе принятия решений. Управлению поддаются лишь динамические
объекты: на них оказывается воздействие, вследствие чего состояние их меняется.
Рисковая ситуация представляет собой нарастание таких факторов, которые, по
оценке руководителя предприятия или подразделения, с одной стороны могут улучшить
результаты хозяйственной деятельности. С другой стороны, из-за отклонения значений
важных для предприятия показателей от нормального и устойчивого среднего уровня,
возникает нежелательная ситуация.
Принято говорить о первичных и вторичных центрах риска, то есть о причинах
возникновения рисковых ситуаций и их следствиях. Нарушение рабочими режима
обслуживания оборудования приводит к возникновению брака. Первичным центром риска в
данном случае является брак, допущенный в процессе производства.
Выпуск низкокачественной продукции может оттолкнуть постоянных клиентов,
сократить объемы продаж, уменьшить занятую компанией долю рынка. Следовательно, не
отвечающие стандартам товары и услуги становятся вторичными центрами риска. Иногда
49
первичные и вторичные центры риска могут совпадать, создавая замкнутый круг
воспроизводства рисковых ситуаций. Так, отток клиентов может привести к ухудшению
положения предприятия, падению оплаты труда, увольнению квалифицированного
персонала и как следствие, к дальнейшему снижению качества продукции[1] .
Экономическая оценка риска и его влияние на доходность инвестиционного проекта
позволяет определить уровень риска, разработать меры по его снижению, а также оценить
его влияние на доходность по показателям экономической эффективности инвестиционной
деятельности. Этот подход позволяет установить следующие функциональные зависимости:
• между начальным и конечным уровнем риска через величину снижения ожидаемых
потерь и затрат на мероприятия, которая позволяет оценить насколько снизился риск и
предусмотреть эффективность оптимального портфеля мероприятий;
• между внутренней нормой доходности и величиной уровня риска через чистый
доход, уменьшение которого приводит к снижению ВНД;
• между показателем уровня риска и нормой дохода за счет величин, участвующих в
формулах, с помощью которых они рассчитываются. Первоначальный уровень
инвестиционного риска определяется по формуле:
где
К
и.р.
– уровень риска инновационного проекта;
- совокупный риск инновационной деятельности за весь расчетный
период Т, то есть от начала проекта до его прекращения;
- чистый доход или чистый денежный поток от производственной,
инвестиционной и финансовой деятельности за весь расчетный период Т;
- сумма амортизационных отчислений за весь расчетный период Т;
- Оптимальная сумма покрытия потерь (риска) за
весь расчетный период T.
Экономический смысл формулы заключается в том, что величина потерь от
реализации рисковых событий, возникающих под воздействием факторов, не должна
превышать оптимальную сумму покрытия. Оптимальная сумма покрытия представляет
собой часть суммы чистого дохода за вычетом амортизационных отчислений, потому что
они являются главным источником инвестиций в рамках собственных средств,
направляемых на развитие, а точнее на обновление основных фондов. Амортизационные
отчисления используются по двум направлениям, 70% из них предназначены исключительно
для реновации, а 30% для обеспечения технического обслуживания, то есть ремонтные
работы и т.п. На основе выше изложенного можно сделать выводы об уровне риска при
возникновении тех или иных условий:
Если величина потерь не превышает сумму чистого дохода за вычетом амортизации,
то уровень риска можно считать приемлемым;
Если величина потерь находится в пределах суммы чистого дохода и 30% от
амортизации, выделяемой на техническое обслуживание, то уровень риска оценивается как
средний;
Если величина потерь меньше или равна сумме чистого дохода и амортизационных
отчислений, включая 70%, используемых на реновацию, то уровень риска является
значительным;
Если величина потерь больше, чем сумма покрытия, то уровень риска характеризуется
как катастрофический.
Развиваясь, не только в пространстве, но и во времени, рисковая ситуация проходит
четыре общие стадии:
50
1) сигналы о возможности возникновения;
2) признаки возникновения;
3) непосредственное разворачивание событий;
4) проявление результатов принятых решений и предпринимаемых действий
(преодоление негативных обстоятельств или коллапс предприятия).
Эти стадии составляют так называемый жизненный цикл рисковой ситуации,
ограниченный временными рамками, - от зарождения до того или иного разрешения[2].
Сигналы возможного возникновения рисковой ситуации служат индикаторами
изменений условий внутренней и внешней среды, которые могут вызвать негативные
последствия для предприятия. Пусть такие признаки не всегда свидетельствуют о
неизбежном возникновении риска, лучше их воспринимать как предупреждение.
Литература
1.
Гранатуров В.М. Экономический риск: сущность, методы измерения, пути снижения:
Учебное пособие. — 2-е изд., перераб. и доп. — М., 2002. — С.160
2.
Москвин В.А. Управление рисками при реализации инвестиционных проектов. — М.,
2004. — С.352
Достарыңызбен бөлісу: |