Лекция Вектор. Операции над векторами


Свойства линейно зависимой системы векторов



бет3/19
Дата11.04.2022
өлшемі0,94 Mb.
#30663
түріЛекция
1   2   3   4   5   6   7   8   9   ...   19
Байланысты:
тезисы лекций

Свойства линейно зависимой системы векторов

10. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

□ Пусть система, состоящая из одного вектора , линейно зависима. Докажем, что вектор .

Из определения линейно зависимой системы следует, что существует такое, что . Так как первый сомножитель в левой части не равен 0, то второй сомножитель должен быть нулевым вектором, т.е. .

Пусть, обратно, . Докажем, что система, состоящая из одного вектора , линейно зависима. Левую часть равенства можно записать в виде , следовательно, , т.е. существует такое, что . По определению линейно зависимой системы векторов система линейно зависима. ■

20. При n>1 система векторов линейно зависиматогда и только тогда, когда хотя бы один из них является линейной комбинацией остальных векторов этой системы.

□ Пусть система векторов линейно зависима.Докажем, что один из ее векторов является линейной комбинацией остальных векторов этой системы.

По определению линейно зависимой системы векторов существуют числа , не все равные 0 одновременно, такие, что.



Пусть для определенности , где к – одно из чисел 1, 2, ...,n. Перенесем все слагаемые, кроме , из левой части равенства в правую и разделим обе части равенства на :.

Следовательно, вектор есть линейная комбинация векторов .

Пусть теперь один из векторов системы , например, , является линейной комбинацией векторов . Докажем, что система векторов линейно зависима.

По условию . Перенесем в правую часть и поставим это слагаемое между и :



.

Таким образом, существуют такие числа , не все равные 0 одновременно, что выполняется векторное равенство



.

Следовательно, система векторов линейно зависима. ■



30. Если часть данной системы векторов линейно зависима, то и вся система линейно зависима.

□ Пусть дана система векторов и известно, что ее подсистема <n, линейно зависима. Тогда существуют такие числа , причем , что .

Тогда ,

т.е. нашлись числа , причем , следовательно, система линейно зависима. ■

40. Система линейно независимых векторов не содержит нулевого вектора.

□ Пусть система линейно независима. Предположим, что она содержит . По свойству 10 система линейно зависима. Тогда по свойству 30 вся система линейно зависима. Получили противоречие с условием. ■

50. Если система векторов линейно независима, то любая ее часть линейно независима.

□ Предположим, что существует часть данной системы, являющаяся линейно зависимой. Тогда по свойству 30 вся данная система должна быть линейно зависимой. Получили противоречие с условием. ■

60. Система векторов линейно зависима тогда и только тогда, когда ||.



□ Пусть система векторов линейно зависима. Тогда по свойству 20 или , или . По теореме о коллинеарных векторах ||.

Пусть ||. Если один из векторов нулевой, например, , то по свойству 40 система , линейно зависима. Если , то по теореме о коллинеарных векторах . Так как , то система векторов линейно зависима. ■

Аналогично, пользуясь теоремой о компланарных векторах, можно доказать свойство

70. Система векторов линейно зависима тогда и только тогда, когда эти векторы компланарны.

Вопросы:


1. Начертите два не исходящих из одной точки неколлинеарных вектора. Постройте их сумму сначала по правилу треугольника, затем по правилу параллелограмма. Постройте их разность.

2. Начертите два коллинеарных вектора. Постройте их сумму и разность.

3. Запишите правило треугольника для точек . Сколькими способами можно это сделать?

4. Даны три точки . Представьте вектор в виде разности двух векторов.

5. Начертите 5 векторов и постройте их сумму, пользуясь правилом многоугольника


1

№ 3

лекция




Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   19




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет