Лекциялық сабақтар тезистері 1-лекция. Заряд. Кулон заңы. Электр өрісі. Суперпозиция принципі. Гаусс теоремасы


-лекция. Құйынды электр өрісі. Ығысу тогы. Максвелл теңдеулері. Материалдық теңдеулер. Шекаралық шарттар



бет8/11
Дата10.06.2023
өлшемі155,73 Kb.
#100353
түріЛекция
1   2   3   4   5   6   7   8   9   10   11
Байланысты:
лекции

25-лекция. Құйынды электр өрісі. Ығысу тогы. Максвелл теңдеулері. Материалдық теңдеулер. Шекаралық шарттар.
Қозғалыссыз тұрған контурдан өтетін магнитағыны өзгергенде, контурдан индукцияланған ток ағады. Контурдағы зарядтар қозғалысын тосын күштер туғызады. Яғни, индукцияланған ток контурда пйда боған электр өрісінен болады. Осы өріс кернеулігін ЕВ деп белгілейік. Контурда пайда болатын индукциясының э.қ.к.-і контур бойынша ЕВ векторының циркуляциясына тең:

Электромагниттік индукция заңын қолданып бұл теңдеуді былай жазуға болады:

Электростатикалық өрістің Еq кернеулігінің кезкелген тұйық контур бойынша циркуляциясы нолге тең болатын. Бұл өріс потенциалды болатын. Ал ЕВ векторының циркуляциясы нолге тең емес. Демек, ЕВ векторының өрісі мағнит өрісі сияқты құйынды болады екен. Жалпы жағдайда электр өрісі электростатикалық Еq өрісімен, магнит өрісінің өзгерісінен болатын, қ ұйынды электр өрісі ЕВ –нің қосындысынан тұрады, яғни Е = ЕВ + Еq. Қосынды өріс кернеулігі үшін мына өрнекті аламыз:

Өзгеретін электр және пайда болатын магнит өрістері арасындағы сандық қатысты орнатуда Максвелл ығысу тогы деп аталатынды енгізді. Максвелл электр тогы барлық уақытта тұйықталған болу керек деп пайымдады. Сонда, толық ток тығыздығы өткізгіш және ығысу тогы тығыздықтарының қосындысына тең болады:
jтолық = jөт + jығ
Ығысу тогы ығысу векторының өзгеру жылдамдығымен анықталады:

Магнит өрісінің кернеулік векторының циркуляциясы толық ток тығыздығымен анықталады. Ығысу тогы Максвеллге электр және магнит өрістерінің біртұтас теориясын жасауға мүмкіндік берді. Максвелл электромагниттік өрісті сипаттайтын төмендегі теңдеулер жүйесін тағайындады:

Ортаны сипаттау үшін Максвелл тағы үш теңдеу жазды, оларды материалдық теңдеулер деп атайды:


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10   11




©emirsaba.org 2024
әкімшілігінің қараңыз

    Басты бет