25-лекция. Құйынды электр өрісі. Ығысу тогы. Максвелл теңдеулері. Материалдық теңдеулер. Шекаралық шарттар. Қозғалыссыз тұрған контурдан өтетін магнитағыны өзгергенде, контурдан индукцияланған ток ағады. Контурдағы зарядтар қозғалысын тосын күштер туғызады. Яғни, индукцияланған ток контурда пйда боған электр өрісінен болады. Осы өріс кернеулігін ЕВ деп белгілейік. Контурда пайда болатын индукциясының э.қ.к.-і контур бойынша ЕВ векторының циркуляциясынатең:
Электромагниттік индукция заңын қолданып бұл теңдеуді былай жазуға болады:
Электростатикалық өрістің Еq кернеулігінің кезкелген тұйық контур бойынша циркуляциясы нолге тең болатын. Бұл өріс потенциалды болатын. Ал ЕВ векторының циркуляциясы нолге тең емес. Демек, ЕВ векторының өрісі мағнит өрісі сияқты құйынды болады екен. Жалпы жағдайда электр өрісі электростатикалық Еq өрісімен, магнитөрісінің өзгерісінен болатын, құйынды электр өрісі ЕВ –нің қосындысынан тұрады, яғни Е = ЕВ + Еq. Қосынды өріс кернеулігі үшін мына өрнекті аламыз:
Өзгеретін электр және пайда болатын магнит өрістері арасындағы сандық қатысты орнатуда Максвелл ығысу тогы деп аталатынды енгізді. Максвелл электр тогы барлық уақытта тұйықталған болу керек деп пайымдады. Сонда, толық ток тығыздығы өткізгіш және ығысу тогы тығыздықтарының қосындысына тең болады:
jтолық = jөт + jығ Ығысу тогы ығысу векторының өзгеру жылдамдығымен анықталады:
Магнит өрісінің кернеулік векторының циркуляциясы толық ток тығыздығымен анықталады. Ығысу тогы Максвеллге электр және магнит өрістерінің біртұтас теориясын жасауға мүмкіндік берді. Максвелл электромагниттік өрісті сипаттайтын төмендегі теңдеулер жүйесін тағайындады:
Ортаны сипаттау үшін Максвелл тағы үш теңдеу жазды, оларды материалдық теңдеулер деп атайды: