Задача 1
Решить задачу, используя диаграмму Эйлера-Венна.
В день авиации всех желающих катали на самолете, планере, дельтаплане. На самолете прокатилось 30 человек, на планере – 20, на дельтаплане – 15. И на самолете, и на планере каталось 10 человек, на самолете и дельтаплане – 12, на планере и дельтаплане – 5, два человека прокатились и на самолете, и на планере, и на дельтаплане. Сколько было желающих прокатиться?
Задача 2
Задано универсальное множество U = {1, 2, 3, 4, 5, 6, 7, 8} и множества X = {1, 3, 5, 7, 8}, Y = {2, 5, 6, 8}, Z = {1, 3, 5, 6}. Найти булеан множества Z и какое-любое разбиение множества Y. Выполнить действие .
Задача 3
Пусть X = {1, 2, 3, 4, 5}. Бинарное отношение задано характеристическим свойством:
.
Представить отношение R другими возможными способами. Выяснить, какими свойствами оно обладает.
Задача 4
Заданы отношения: R:
A1
|
A2
|
A3
|
a
|
b
|
c
|
a
|
c
|
d
|
b
|
c
|
d
|
S:
Записать обозначения операций реляционной алгебры и выполнить их:
проекция на список (3,2) отношения R;
соединение отношений R и S по условию “A1=B1”.
Задача 5
Сколькими способами 8 человек можно рассадить на лавке (всех в один ряд)?
Задача 6
Восемь туристов отправились в путь на двух лодках, в меньшей из которых могли поместиться не более четверых, а в большей – не более шестерых человек. Сколькими различными способами они могут распределиться в разные лодки? (Распределения считаются различными, если хотя бы один турист окажется в другой лодке).
Достарыңызбен бөлісу: |