1-мысал. n әртүрлі элементтердің m элементтерінен тұратын әртүрлі қанша комбинация құрастыруға болады? Мұнда әрбір комбинациялар бір бірінен кем дегенде бір элементімен немесе сол элементтердің әр түрлі орналасуымен өзгешеленеді.
Шешуі:Бірінші элементті n элементтер арасынан n тәсілмен таңдап алуға болады. Екінші элемент (n -1)тәсілімен таңдалады, үшінші элемент (n -2) тәсілімен таңдалады. Дәл осылай m элементтен тұратын комбинацияның санын көбейту ережесін пайдаланып n(n-1) (n-2)( n-3)...( n- (m-1)) тәсілмен таңдауға болатынын көреміз. Факториалды қолдану арқылы, мұны былай жазуға болады:
Анықтама: берілген n элементтен бір бірінен құрамы немесе орналасу ретімен өзгеше болатын m элементтер таңдамасын n элементтен алынған m элементті қайталанбайтын орналастыру деп атайды.
Қайталанбайтын орналастыру былай белгіленіп , мына формуламен есептелінеді: (1) 2-мысал. 1, 2, 3, 4, 5 цифрлар арқылы цифрлары қайталанбайтын қанша а) екі таңбалы, үш таңбалы, төрт таңбалы, бес таңбалы сандар құрастыруға болады?
Шешуі: а) екі таңбалы сандар саны – 5элементтен 2-ден алынған қайталанбайтын орналастырулар болады, онда (1) формула бойынша =
б) үш таңбалы сандар саны - 5 элементтен 3-тен алынған қайталанбайтын орналастырулар болады, яғни (1) формуласы бойынша = үш таңбалы сан алуға болады.
в) төрт таңбалы сандар саны – 5 элементтен 4-тен алынған қайталанбайтын орналастырулар сан алуға болады.
г) бес таңбалы сандар саны да тең болады.
3-мысал. 25 орынға 4 адамды неше тәсілмен орналастыруға болады?
Шешуі: (1) формуласы бойынша n=25, m=4, онда тәсілмен орналастыруға болады.