Условия равновесия плоской системы сходящихся сил Для равновесия системы сходящихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю.
1) Геометрическое условие равновесия сходящейся системы сил: для равновесия системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнут (конец вектора последней слагаемой силы должен совместиться с началом вектора первой слагаемой силы). Тогда главный вектор системы сил будет равен нулю ().
2) Аналитические условия равновесия. Модуль главного вектора системы сил определяется по формуле . Поскольку , то подкоренное выражение может быть равно нулю только в том случае, если каждое слагаемое одновременно обращается в нуль, т.е.
Rx = 0, Ry = 0, Rz = 0.
Следовательно, для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трёх координат осей были равны нулю:
Для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы суммы проекций сил на каждую из двух координатных осей были равны нулю:
Теорема о трех силах: если твердое тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости (рис. 13), то линии их действия пересекаются в одной точке (необходимое условие равновесия твердого тела).
Рис. 13
Это условие равновесия не является достаточным, т.к. равнодействующая этих сил может оказаться не равной нулю.
Достаточным условием является наличие замкнутого силового треугольника при одновременном пересечения линий действия трех сил в одной точке.
Рассмотрим тело, на которое действуют три непараллельные силы , и (рис. 14).
Рис. 14
Так как эти силы непараллельны, то две любые силы, например, и должны пересечься в некоторой точке А. Перенесём силы и вдоль линии их действия и приложим их к точке А. Заменим сходящиеся силы и их равнодействующей .
Следовательно, теперь на тело действуют только две силы и . Поскольку тело находится в равновесии под действием двух сил, то согласно первой аксиоме статики, эти силы должны действовать вдоль одной прямой АВ. Таким образом, линия действия силы должна проходить через точку А.