Таким образом можно сделать выводы:
1. В рифее – венде произошла тектоно-магматическая активизация астеносферы и верхней
мантии. Рассматриваемая территория была вовлечена в режим растяжения с возникновением рассе-
янного рифтинга.
2. В рифтовых долинах накапливались вулканогенно-осадочные породы, известняки и доломи-
ты раннего и среднего палеозоя.
3. Начавшееся сближение Восточно-Европейской и Казахстанской плит в позднекаменно-
угольное время привело к коллизии этих двух плит в ранней перми, что повлекло за собой образова-
ние горной системы Урала и Мугоджар и на изменение тектонического плана и режима развития ис-
следуемой территории. В районе кряжа Карпинского, Бозашинской системы дислокаций напряжения
сжатия сминают мощный комплекс верхнекаменноугольно-нижнепермских отложений.
●
Жер туралы ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
9
4. В поздней перми и раннем триасе земная кора испытала слабое растяжение, что выразилось
в незначительном проявлении базальтового вулканизма
5. В раннекиммерийскую эпоху тектогенеза происходит столкновение микроконтинентов
Мангышлака и Устюрта с Восточно-Европейским континентом. Тангенциальные силы сжатия в зоне
коллизии обусловливают формирование инверсионного поднятия с развитием взбросо-надвиговых
дислокаций.
6. На развитие исследуемого района оказали влияние Уральский палеоокеан, океан Палеоте-
тис, расхождение, сближение и столкновение различных геоблоков и надвигание тектонических плит
на край Восточно-Европейской платформы, под действием которых сформировались определенные
типы палеозойских и верхнепермско-триасовых и юрско-меловых формаций.
7. Нефтегазоносность и перспективы Южного Мангышлака связаны с рифтогенной моделью
нефтегазообразования.
ЛИТЕРАТУРА
[1] Милановский Е.Е. Рифтогенез в истории Земли: рифтогенез в подвижныx поясаx. М.: Недра, 1987. 298 с.
[2] Нурсултанова С.Г. Тектоно-седиментационная модель строения и нефтегазоносность доюрских отло-
жений зоны сочленения Прикаспийской синеклизы с Туранско-Скифской плитой Автореферат кандидатской
диссертации, Алматы, 2003
[3] Веселов И.А. Выделение сейсмически опасных мест Туранской плиты по комплексу геолого-
геофизических данных // Автореф. дис. канд.геол.-минер, наук. - М., 1991.
[4] Клещев К.А., Петров А.И., Шеин B.C. Геодинамика и новые типы природных резервуаров нефти и га-
за // Тр. ВНИГНИ. - М.: Недра, 1995.
[5] Попков В.И. Тангенциальная тектоника и нефтегазоносность Арало-Каспийского региона // Докл. АН
СССР. - 1990. - Т. 313, № 2. -С.420-423.
[6] Хаин В.Е., Соколов Б.А. Рифтогенез и нефтегазоносность: основные проблемы // Геологический жур-
нал. - 1991. - № 5. - С.3-11.
[7] Grunau H.R. Rift systems can point way to hydrocarbon richness // World Oil. - 1990. - Vol.211, № 5. - P.96-98.
Нурсултанова С.Г., Муканов Д.Б.
Оңтүстік Манғышлақтық рифтогенез кезендері
Түйіндеме. Соңғы уақытта мұнайгаздылы провинциялар мен облыстардың қалыптасуы, мұнайгаз түзілуі
туралы түсініктер көбінесе жер қойнауының геодинамикалық режиміне байланысты болып келеді. Маңғышлақ-
тың тереңдік құрылысының, жарылымды тектоникасының, седиментациясының және физикалық өрістерінің
геологиялық-геофизикалық белгілері соңғы палеозой уақытында континенттік рифтогенез процесінің басым
болғанын дәлелдейді. Ерте юра-соңғы триас кезінде рифттер Қарақұм мен Солтүстік Үстірт тақталарының соқ-
тығысуынан орогендік тасымалданған
Кілт сөздер: рифт,мұнайгаздылығы, қатпарлық,шөгінді жинақтау Оңтүстік Манғышлақ.
Nursultanova S.G., Mukanov D. B.
Stages of rifting in Southern Mangyshlak basin
Summary. In the light of the latest ideas and oil-and-gas formation generation of oil-and-gas provinces and
fields depends to a great extent on geodynamical condition of subsoil. The main geologic-geophysical indications of
depth structure, fault tectonics, sedimentation and physical fields of Mangyshlak gives evidence to the predominance of
continental rifting in Late Paleozoic time. In Late Triassic-Early Jurassic time rifts were transformed into Orogeny by
collision of Karakum and North Ustyurt plates
Key words: Rift, oil and gas content, folding, sedimentation, Southern Mangyshlak
●
Науки о Земле
№2 2016 Вестник КазНИТУ
10
УДК 553.98(574.)
D.A. Ismailova,
S.G. Nursultanova
(KazNITU after K.I. Satpaeyev, g.saida @inbox)
AN ANALYSIS OF RESERVOIR PROPERTIES OF UZEN GAS AND OIL FIELD
Abstract. The article describes reservoir properties of 13-18 productive horizons of Uzen gas and oil field. The
main rock-forming components, cement, distribution of fractions that helps to evaluate reservoir rocks quality and to
choose effective methods to enhance oil recovery.
Key words: Reservoir rocks, productive horizon, rock-forming components, fractions, porosity, permeability,
deposits, Uzen gas and oil field.
Introduction
In terms of tectonics Uzen field refers to Zhetybai-Uzen tectonic stage of north side of the Southern
Mangyshlak depression.
Most of the hydrocarbons in the South Mangyshlak are concentrated in the Mesozoic terrigenous res-
ervoir rocks (fig. 1). The spatial distribution of hydrocarbon accumulations indicates that the major oil source
rocks are the Lower and Middle Triassic sediments. (fig. 2). '[1]
Uzen field is characterized by a high heterogeneity of productive horizons that is negatively affects the
exploitation of this field. The heterogeneity of reservoir properties occurs due to the alternation of good per-
meable rocks with almost impermeable layers of clay. The quality of the reservoir also influenced by the
shape and roundness of grains, cement and rock-forming minerals.
Main course
Figure 1. Geological profile. South Mangyshlak. [1]
In this paper the reservoir properties of 13-18
th
productive horizons lying at a depth of 1080-1370 m
are presented. The main oil reserves are concentrated in the horizons and they have complex physical and
chemical composition and properties. The reservoir rock is characterized by a very high permeability hetero-
geneity. By the type the reservoir is characterized as sheet dome trap, massive type of accumulation of oil,
oil, gas and gas-oil mixed deposits.
●
Жер туралы ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
11
Figure 2. Southern Mangyshlak. Event chart. [1]
Figure 3. Uzen field [2]
●
Науки о Земле
№2 2016 Вестник КазНИТУ
12
Table 1. Characteristics of deposits [3]
Area, block, dome
horizon
deposit
Type of deposit
(pool)
Saturation
fluid
Size of deposits
Oil-bearing
capacity, m
2
10
3
Height of
deposit, m
The main area
13
А
layer-uplifted
oil
178758
335
Б
layer-uplifted
oil
106748
323
В
layer-uplifted
oil
225327
314
Г
layer-uplifted
oil
203733
305
Д
layer-uplifted
oil
167340
295
14
А
layer-uplifted
oil
187879
279
Б
layer-uplifted
oil
188261
273
В
layer-uplifted
oil
129789
247
15
А
layer-uplifted
oil
93727
221
Б
layer-uplifted
oil
92252
208
В
layer-uplifted
oil
44547
184
16
1
layer-uplifted
oil
65231
171
16
2
layer-uplifted
oil
48595
149
17
А
layer-uplifted
oil-and-gas
37456
137
17
Б
layer-uplifted
oil-and-gas
33240
130
18
А
layer-uplifted
tectonic sealed
oil
14311
72
Б
layer-uplifted
tectonic sealed
oil
9128
50
В
layer-uplifted
tectonic sealed
oil
7635
40
Central block
18
А
layer-uplifted
tectonic sealed
oil
7556
70
Б
layer-uplifted
tectonic sealed
oil
660
20
В
layer-uplifted
tectonic sealed
oil
564
12
Parsumurun
14
В
layer-uplifted
oil
4035
50
15
Б
layer-uplifted
oil
2264
38
17
Б
massive
oil
869
15
North West
14
В
1+2
layer-uplifted
oil
5898
63
В
3
layer-uplifted
oil
3712
39
В
4
layer-uplifted
lithol. sealed
oil
3262
30
15
А
layer-uplifted
oil
2852
40
Б+В
massive
oil
5873
48
18
В
layer-uplifted
oil
886
18
Khumurun
17
А
layer-uplifted
tectonic sealed
oil -and-gas
2484
37
Б
massive tectonic
sealed
oil -and-gas
7063
39
18
А1
layer-uplifted
lithology.sealed
oil
1513
21
А2
layer-uplifted
tectonic sealed
oil
3039
23
Б
layer-uplifted
tectonic sealed
oil
3587
24
В
layer-uplifted
tectonic sealed
oil
3466
24
East Parsumurun
18
В
layer-uplifted
oil
427
9
Reservoir rocks of 13-18
th
productive horizons by the character of intra-porous surface classified as
fully hydrophilic or predominantly hydrophilic. This feature of the filtration medium controls the initial dis-
tribution of the residual water and oil as well as the nature of the joint flow of reservoir fluids at the arising
pressure gradients
●
Жер туралы ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
13
From the lithological point of view, the rocks in the field are presented as a frequent and uniform al-
ternating of sandstones, siltstones and clays containing large amounts of carbonaceous residues and prints of
flora and thin lenticular seams of coal presence. The structure of rocks is horizontal, cross bedding, unclearly
layering, lenticular, rarely massive. The rocks are characterized by both vertical and lateral lithological varia-
tion, which is the consequence of the formation of precipitation in the challenging environment of coastal
marine shallows.
Table 2. Characteristics of the Middle Jurassic deposits
The main rock-forming components of the sandstones and siltstones are fragments of siliceous, mica-
siliceous, clay and effusive rocks, grains of quartz and feldspar, biotite and muscovite leaves. The form of
grains is angular or subrounded. The cement composition is of clay, the main component of it is kaolinite
with a mixture of chlorite and hydromica. Cement type is a film hydromica, kaolinitic porous, porous-film,
crustified chlorite and, rarely, basal-porous clayey. The reservoir rocks are characterized by loose packing of
detrital grains due to both the high cement content and a low degree of epigenetic changes. By type of voids
the trap characterized as porous. In general, the content of the sand fraction of 1,0-0,1 mm in the rocks is
36.73% increasing down the cross-section to 67.51 and 68.54%, respectively. With an increase down the
cross-section of the content of the medium-grain sand fractions, the content of grains of silt size decreases
from 31.05% to 13.14%. Also the content of clay particles (fraction <0.01 mm) decreases from 29.72% to
18.99% respectively. (fig. 4.)
Fractions: 1- 1,0-0,1mm
2- 0,01-0,1mm
3- <0.01 mm
Figure 4. Distribution of fractions with the depth
In general, the content of fine sand and silt fractions (0,25-0,10 and 0.10-0.01 mm) in horizons of reservoir
rocks is more than 50%. Thus the average content of these fractions is equal to 63.84 - 57.73% in the trap.
The average value of carbonate content in rocks is low ranging from 0.34 to 2.5%.
According to the research of core of well 6602 conducted by the English company «Robertson Re-
search International Limited» the productive strata contains arenites - sandstones sorted by the Paleo-floods
and featuring with low content of clay material. Such types of rocks in the productive strata are related to the
most high-capacity and permeable reservoirs.
Horizons are divided clay packs, the thickness of which is 5-10 meters. Thickness variations of the ho-
rizons is associated to the presence or absence of reservoir traps within the horizon, so that the greater the
total thickness of the selected reservoirs the greater the total thickness of the horizon and vice versa.
●
Науки о Земле
№2 2016 Вестник КазНИТУ
14
In the analysis of average values of porosity determined from cores it is shown that the greatest aver-
age porosity (0,26-0,27) have traps of the 13
th
horizon and at the same time the traps of the 14 -17
th
horizons
have average porosity (0.22-0.24) and the smallest value of the average porosity of the reservoir have the 18
th
horizon (0.22). The average porosity values are defined from the geophysical well logging differ slightly; by
the deposits of the 13
th
horizon they are a few lower (0,25-0,26); traps containing deposits of the 14-17
th
ho-
rizons have the average porosity values (0,24-0,25) and average porosity values of reservoirs determining
the structure of the pore space of deposits of the 18
th
horizon remain the lowest (0,21-0,22). Thus, confirms
the established regularity presuming the decreasing of porosity with depth.
Figure 5. Distribution of average porosity by the horizons
As the lower limit of the permeability of the productive reservoir rocks’ the order of magnitude of
0.001 μm
2
was adopted during the last calculation of reserves. Thus, the lower limit of the porosity consti-
tutes the value of 0.14. By the dependence of the porosity on clay content, the upper limit of clay reaching
42% adopted in 1963 was confirmed, (with a higher clay content in a productive strata the rocks within lose
their reservoir properties).
●
Жер туралы ғылымдар
ҚазҰТЗУ хабаршысы №2 2016
15
Figure 6. Distribution of permeability horizons
According to these graphs, the collector basically has good and moderate permeability. At the same
time there are variations in the permeability of separate packs in each horizon. As an example, the 13
th
hori-
zon pack b has a high permeability (0.64) compared to the d pack (0.21μm
2
). The smallest variation in per-
meability have the 15
th
and 18
th
horizons.
According to the analysis, in the field the Jurassic deposits’ productive horizons porosity reaching the
value of more than 0.2 is possible due to the angularity of the grains and loose grain packing of reservoir-
rock, as well as the content of clayey cement. 'Clayey cement does not cause the real hardening of the sand,
as the clay particles have only a weak coupling effect and the rocks remain loose. Clayey cement is deposited
simultaneously with sand grains and generally adheres thereto so that after its deposition there is considera-
ble porosity value remains. '[4]
The factors that influence as the reduction in permeability in this case may make the presence of the
major rock-forming components of the sandstones and siltstones, such as fragments of siliceous, mica-
siliceous, clay and effusive rocks, grains of quartz and feldspar, biotite and muscovite leaves. 'As is known,
minerals of plastic shapes such as muscovite and clay interlayers act as a barrier for the vertical filtering.' [4]
The both vertical and lateral lithological variation significantly reduces the permeability and in consequence
the formation of precipitation in the challenging environment littoral marine shallow water and high cement
content occur.
Conclusion
An analysis of reservoir properties of Uzen gas and oil field’s productive horizons helps to choose ef-
fective methods for enhancing oil recovery.
●
Науки о Земле
№2 2016 Вестник КазНИТУ
16
REFERENCES
[1] Gregory F.. Petroleum Geology and Resources of the Middle Caspian Basin, Former Soviet Union. U.S.
Geological Survey Bulletin 2201-A, version 1.0, 2001. P., 11,12,14.
[2] KazMunaiGas Exploration and Production. Deposits JSC Ozenmunaygaz: Modernization to the name of
growth, 2012. P., 7.
[3] Abdullin A.A.. Geology of Kazakhstan, Science of Kazakhs SSR, Almaty 1981
[4] Djebbar Tiad, Erle C. Donaldson. Petrophysics: Theory and practice of measuring reservoir rock and fluid
transport properties. Gulf Professional Publishing, 2012
[5] Manik Talwani et al. Geology and petroleum potential of Central Asia. Rice University.1998
[6] Nursultanova S.G.. Petrophysics. Kazakh National Technical University named after K.I.Satpayev, Almaty
2013
[7] Nursultanoca S.G., Kislyakov E.A.. An analysis of reservoir rock properties of the field related to Zhetybai-
Uzen tectonic stage. Satpeyev readings. Almaty, 2013
Исмаилова Д.А., Нұрсұлтанова С.Г.
Газмұнайлы Өзен кен орнының коллекторлық қасиеттерін талдау
Түйіндеме. Мақалада Өзен кен орнының 13-18 өнімді қабаттарының коллекторлық қасиеттері қарасты-
рылған. тиімді мұнайбергіштілік әдесін таңдау мақсатында коллектордың сапасын анықтау үшін негізгі тау
жыныстарын құрайтын минералдар, цемент, фракцияладрың бөлінуі қарастыралған.
Кілт сөздер: тау жынысы-коллектор, өнімді қабат, тау жынысын құрайтын минералдар, фракциялар,
кеуектілік, өткізгіштілік, шөгінділер, Өзен газмұнайлы кен орны.
Исмаилова Д.А., Нурсултанова С.Г.
Анализ коллекторских свойств газонефтяного месторождения Узень
Резюме. В статье рассмотрены коллекторские свойства 13-18 продуктивных горизонтов газонефтяного
месторождения Узень, основные породообразующие минералы, цемент, распределение фракций, что позволяет
оценить качество коллектора и в дальнейшем подобрать эффективные методы повышения нефтеотдачи пласта.
Ключевые слова: порода-коллектор, продуктивный горизонт, породообразующие минералы, фракции,
пористость, проницаемость, отложения, газонефтяное месторождение Узень.
УДК 622.276-(574)
Достарыңызбен бөлісу: |