Заключение
В общем объеме производимых вычислений неуклонно растет доля той совокупности
современных технологий, которая получила броское наименование «облачные вычисления». Если
раньше через Интернет были доступны, по большей части, лишь приложения, ответственные за
обмен электронными сообщениями и публикацию web-страниц, то сегодня глобальная сеть все чаще
используется для работы со многими другими программными приложениями и базами данных.
Для дальнейшего развития распределенных сетевых приложений и концентрации
вычислительных ресурсов все более важной становится проблема обеспечения информационной
безопасности. Использование облачных вычислений влечет за собой не только значительные
экономические преимущества, такие как снижение затрат, оптимизация структуры инвестиций,
повышение защищенности данных и перенос ответственности за обеспечение безопасности на
поставщика услуг, но и значительные риски с точки зрения обеспечения информационной
безопасности.
Рассмотренные виды услуг облачных вычислений и основных рисков, возникающих при их
использовании, среди которых можно выделить организационные (такие как зависимость от
поставщика услуг, невозможность соблюдения новых требований, ограничение контроля над
используемыми службами) и технические (такие как нарушение изоляции данных, эксплуатация
уязвимостей системы облачных вычислений, истощение ресурсов и отказ в обслуживании,
несовместимость используемых разработок), лежат в основе рекомендаций для перехода на облачные
технологии.
Литература
1Сычев А.В. Теория и практика разработки современных клиентских веб-приложений. Интернет
Университет
Информационных
Технологий
«Электронный
ресурс»
http://www.intuit.ru/department/internet/thpdevweba/24/
04.12.2010.
2XaaS Check 2010. Status Quo und Trends im Cloud Computing. XaaS Check «Электронный ресурс»
http://www.xaas-check.eu/download.php?cat
04.12.2010.
3Cloud
Computing.
Wikipedia,
the
free
encyclopedia
«Электронный
ресурс»
:http://en.wikipedia.org/wiki/Cloud_computing 04.12.2010.
Мақалада «Бұлттық» ERP-жүйелерінің артықшылықтары мен кемшіліктеріне шолу
жасалынған. Кіріспесінде ERP-жүйелеріне анықтама берілген және олардың артықшылықтары
сипатталған, екінші бөлімінде ERP-жүйелеріне мысалдар, «бұлттық» серверде ERP –жүйелерді
енгізуді келтірілген, қатар олардың артықшылықтары мен кемшіліктері сипатталған.
The article provides an overview of the «cloud» ERP-systems, with a description of their strengths and
weaknesses. The introduction defines the ERP-systems and their advantage in the second section provides
examples of the «Cloud» ERP-systems, implementation of ERP system in the «cloud»server, as well as their
advantages and disadvantages.
UDC 372.853
Z.K Kenzhekey, N.A.Tanat
Undergraduate of Suleymen Demirel university, Almati city
University named after Shakarim, Semey city
PHYSICS WITH ROBOTICS
Robotics is a great hook in a classroom environment, engaging reluctant and enthusiastic learners.
Teachers will see that these systems provide students with exceptional feedback, helping them to develop
their ideas and successfully tinker with physical phenomena as they endeavor to take on various science and
engineering challenges.
Key words: physics, robotics, LEGO MINDSTORMS, school education, experiments,
demonstrations.
52
The purpose of this work is not to replace current school physics curriculum. Instead, the purpose of
my work is to supplement school curriculum. I will try to share with teachers in Kazakhstan a set of activities
centered on LEGO robotics because they work well to engage students in the process of learning the
concepts and skills of physics. But I know that every school and every class within every school is different
and those differences warrant adaption. In writing this work, I wanted to focus how every teacher in
Kazakhstan can utilize LEGO® MINDSTORMS® in every classroom. Therefore, while the activities of this
work do not require any modification to use in the classroom, I encourage teachers and students to do. I
supplement my own physics class with new ideas. The ideas that inspired the activities of this work often
came from conversations I had with my own students, teachers and other specialists in fields related to
physics education. I hope that the ideas will help to teachers and students to create unique and powerful
learning opportunities in classrooms in Kazakhstan.
LEGO® as a Physics Learning Technology
The goal of this work is to describe how the tools of a LEGO® MINDSTORMS® robotics kit fits
into a physics learning environment. Because the work itself serves to demonstrate specifically how the
LEGO® MINDSTORMS®kit is used in a physics class, my approach in this section is to treat the topic more
generally, explaining more about why I chose these tools in our own physics classrooms. This section is also
designed to be "food for thought" for teachers and students as they start to modify and create activities.
Generally speaking, the components of a LEGO® MINDSTORMS®kit serve as both measurement and
design tools. As a measurement tool, they are only limited by the type of sensor to which you can connect.
Both the NXT and RCX can be connected to many LEGO and non-LEGO based sensors. As a design tool,
they afford the student a great deal of precision in their measurements and they allow students to use the
same medium for designing scientific experiments as well as solutions to engineering design challenges.
LEGO® MINDSTORMS® as a measurement tool.
With LEGO built light sensors, thermometers, angle sensors, microphones, and distance sensors,
both the RCX and NXT serve as stand-alone measurement tools. Both the NXT and the RCX have a "view"
option that allows to see the data streaming in on any sensor directly on the device's screen. The NXT can be
set-up quickly for a diversity of short and simple investigations.
With a little more effort, the NXT can be extended to display data from third party sensors as well.
For example, teacher can connect the NXT and sensors made by Vernier Software and Technology. Used
this way, one can turn the NXT into a customizable data display center.
Using LEGO® MINDSTORMS® for accuracy and precision investigation and design
activities.
How often do students discuss "human error" in their lab reports? How often are the data collected
by students inconclusive? How often are discussions with students less about what the data are and more
about what the data should be? The final point that I wish to discuss in this section about the role LEGO®
MINDSTORMS®plays in physics classroom is the issue of accuracy and precision in robot based physics
investigations.
While the robotic tools used in the activities of this work enhance student investigations and applied
physics design projects, they do not take the thinking out of the process. LEGO® MINDSTORMS®do not
necessarily make a student's measurements more accurate. Students will still need to learn and practice the
essential skills of experimental design and the methods of science. They will need to determine the
parameters of their experiment such as which variables to control, instruments to use, units of measurement,
the duration of each run, and the number of runs. They will practice how to analyze data, reading trends and
fitting appropriate models. They will practice evaluating the results of an investigation and comparing their
results with their predictions.
LEGO® MINDSTORMS®is very helpful in improving the precision of student measurements. The
precision of a set of measurements communicates how close the measurements are to each other. Precise
measurements have a very small variance. NXT and RCX based experiments come in quite handy when
precision is needed. If teacher program the robot to move for 5 wheel rotations, it will travel the same
distance every single time. If student program the robot to move its motor at a specified speed, it will do that
every single time.
With the exception of low battery issues, students will be very pleased with the precision of the data
collected. This will be evident in the activities of this work. Experiencing the precision of data in a LEGO®
53
MINDSTORMS®based investigation opens up students mind to investigations that students did not think
possible before.
LEGO® MINDSTORMS® as a physics investigation and design tool.
As a measurement tool, the NXT and RCX stand with meter sticks, stop watches, spring scales,
thermometers, digital force meters, digital motion detectors, voltmeters, ammeters, and other instruments in
your physics equipment inventory. But, what about the rest of the pieces that come in a LEGO®
MINDSTORMS®kit? LEGO is, after all, known as a construction medium. The LEGO blocks, beams,
wheels, gears, etc allow students to build a myriad of set-ups for investigations and applied physics projects.
Bridging the gap between physics and engineering
Engineering design challenges are not new to physics classes. From paper airplanes, egg drops, water
rockets, toothpick bridges and mousetrap cars, engineering challenges in physics instruction allow students
the opportunity to engage in creative, enjoyable, and practical ways. Engineering design challenges gives
students an opportunity to talk about physics as it relates to something they created, something practical.
Engineering design challenges puts physics to use and immediately answers the question, "Why are we
learning this?"
If physics teachers already do engineering design challenges, how doLEGO® MINDSTORMS® kits
enhance this form of instruction? They maximize the ratio of equipment to project possibilities. With egg
drops, toothpick bridges and mousetrap cars, teacher need to obtain and maintain a steady supply of
materials, each set of materials dedicated to only a few types of projects. With LEGO® MINDSTORMS®
the number of projects is almost limitless. Perhaps teacher will not do an egg drop project with
MINDSTORMS or launch an NXT in a rocket, but with one kit of materials, teacher can do many other very
engaging applied physics projects.
Summary
In this work, I emphasize the link between physics investigations and engineering design by
providing activities that show students the need to investigate while taking on an engineering design
challenge. For example, students will investigate gear ratios while creating a motorized crane or drag car and
investigate sound waves while creating a system to make the best ear protection. By having students engaged
in projects that synthesize investigations with engineering design, teacher are helping them close the gap
between the concepts and skills of physics and the practical use of those skills. In closing the gap, I try to
help students take what they learn in the classroom and use it in the rest of their lives.
References
1
www.phvsicswithrobotics.com
2 www.legoengineering.com
3 www.MINDSTORMS.lego.com
4 www.vernier.com/nxt
5 www.education.rec.ri.cmu.edu/index.htm.
6 www.lugnet.com
7
www.domabotics.com/index.php
8 www.philohome.com
9 www.extremenxt.com/lego.htm
10 www.legoeducation.com
11 www.hitechnic.com
12 www.mindsensors.com
13
www.dcpmicro.com
Бұл жұмыста біз робототехниканы физика сабақ үстінде жүргізуды талдаймыз.
Робототехника оқушыларды қызықтырып зерттеу жұмыстарына қызығушылығын оятады, яғни
зертеу арқылы мәселелер шешіледі. Робототехниканы физика сабағында қолдану қазіргі заманға сай
деп ойлаймыз.
Робототехника дает нам два аспекта изучения физики в одном лице. В этой работе мы
попытаемся объяснить, о возможности использования робототехники в классе для исследований и
практики. Робототехника привлекает, способствует творческому решению проблем, поощряет
учеников представлять свои идеи в реальном мире.
UDC 372.853
54
Z.K Kenzhekey, N.A.Tanat
Undergraduate of Suleymen Demirel university, Almati city
University named after Shakarim, Semey city
EXAMPLE PROJECTS OF USING LEGO MINDSTORMS IN SCHOOL EDUCATION
Inserting robotics activities in school curriculum produces opportunities to engage students in real
world science and help them to develop conceptual understanding of physics through the process of
investigation, data analysis, engineering design, and construction.
Key words: Measure, conceptual, frequency, investigation, calculations.
Based on the author’s experience, students have difficulty learning, especially in physics classrooms.
But by allowing them to solve problems where the answer is not already on an answer sheet, students learn
problem-solving and this way bring better understanding of concepts. Engineering problems, based on real-
life examples provide students many reasons to learn new material. Use of engineering problems also helps
to focus student’s attention on the process as well as the result.
There are many toolsets available, but I will concentrate on LEGO MINDSTORMS kit because it’s
most popular toolset in the world, students are familiar with LEGO. Activities based on robotics are very
important because this is the synthesis between science investigation and engineering design, a synthesis that
closes the gap between concepts of physics and the practical use of physics.
Example projects
For each example, I will write a project overview and learning objectives from different branches of
physics.
Microphone sound reduction. In this activity, students explore sound waves. They use a LEGO
sound sensor to explore a sound wave’s loudness. Students explore variables such as the distance between
sound source and microphone, sound wave direction and shape, the frequency response of the
MINDSORMS microphone, and the conductivity of sound through different media. Finally, they design
better “ear” protection for the sound sensor by taking what they have learned through the science
investigation and applying it to an engineering design problem. The learning objectives for this project are:
-
Describe sound waves in terms of a transfer of energy.
-
Measure the loudness of a sound wave and relate this measurement to wave’s amplitude, energy, power,
and intensity.
-
Create an experiment that investigate which variables affect the measured loudness of a sound wave.
-
Engineer ear protection that reduces the sound levels measured by the microphone.
Testing speed and acceleration of drag cars. Students work in team to figure out which is more important in a
drag race – speed or acceleration. After a design and construction of a drag car, students use a rotation sensor
to measure distance, speed, and acceleration of their car. They upload, view, and analyze motion graphs via
the data logging function of a LabVIEW program. The learning objectives for this project are:
-
Describe motion in terms of speed and acceleration.
-
Compare various factors that may affect speed and acceleration of an object including power, time of
travel, gear ratio and wheel size.
-
Utilize a scientific experiment to inform the engineering design process with the goal of maximizing
acceleration and speed.
Simple harmonic motion. In this experiment, students use a LEGO microcontroller and an ultrasonic sensor
to investigate the change in vertical motion of an oscillating spring. Calculations of the amplitude and period
can be made using the data from the resulting graph. The learning objective for this project is:
-
Study periodic and the characteristics of a displacement graph that represents simple harmonic motion.
Ten second timer. In this project, students will use their understanding of a simple harmonic motion to
engineer a mechanical 10-second timer that utilizes an external pendulum based clock. Students work in
teams to design a pendulum and sensor package to count swings. Their system is successful if it marks 10
seconds with an audio and visual display. The learning objectives for this project are:
-
Use an idealized system (simple pendulum) to make predictions about the period of a physical pendulum.
-
Apply predicted performance of a physical pendulum in the engineering design process of a mechanical
timer.
-
Use MINDSTORMS sensors to measure the performance of the system nad compare with a calibrated
timer such as a watch.
Conclusion
55
Using LEGO MINDSTORMS robotics activities to teach physics concepts creates an effective
learning environment for conceptual knowledge development through the process of design, construction and
experimental testing. Students have opportunities to develop their skills and become more independent and
confident learners.
References
1 Church W., Ford T., Perova N. Physics with robotics // International Journal of Science Education.- 2009.
№ 29.- Р.226-273.
2 Bratzel B. Physics by Design, 2nd Edition, ROBOLAB Activities for the NXT and RCX.- Knoxville TN.:
College House Enterprises, 2007. - Р.125-130.
3 Erwin B. Creative Projects With LEGO® MINDSTORMS®.- Boston MA.: Addison- Wesley,- 2001.-
Р.223-260.
4 Wang E. Engineering With LEGO® Bricks and ROBOLAB™, 3rd Edition. - Knoxville TN.: College
House Enterprises, - 2007. Р.85-113.
Бұл жобада біз физика пәнінде робототехниканы қолдану мысалдарын береміз, және
мысалдар арқылы оқушыларға тақырыпты жақсы түсінуге комек қызметін атқарады.
В этой работе мы даем несколько примеров того как использовать робототехнику на уроках
физики, потому что внедрение этого помогает ученикам хорошо усвоить материал.
УДК 54.057
М.К.Сейсенбаева, С.К
. Килибаева, Б.С.Тойкин
Семипалатинский государственный университет имени Шакарима
МАТЕРИАЛОВЕДЧЕСКИЕ ИССЛЕДОВАНИЯ С ПОМОЩЬЮ МЕТОДА СВС В
ЯДЕРНОЙ ТЕХНИКЕ
В данной статье описывается метод получения термостойкого материала, путем его
горения. В результате чего материал будет обладать хорошими теплофизическими и ядерно-
физическими свойствами необходимыми в ядерной технике.
Ключевые
слова:
самораспрастроняющийся
высокотемпературный
синтез,
теплопроводность, термоударная стойкость.
Ведутся исследования в лаборатории Семипалатинским Государственным университетом им.
Шакарима совместно с Институтом Атомной Энергии г. Курчатов в области естественнонаучных
основ технологии получения новых материалов с помощью метода самораспространяющегося
высокотемпературного синтеза. К таким материалам относятся, используемые в ядерной технике при
изготовлении защиты от сочетанных потоков ионизирующих излучений, в системах управления и
защиты у физико-энергетических установок, материалы на основе борида вольфрама и карбида бора.
Материалы,
полученные
экспериментальным
путем,
обладают
рядом
преимуществ
по
теплофизическим и ядерно-физическим характеристикам по сравнению с традиционными
материалами. Но в тоже время они обладают достаточно существенным недостатком – плохое
сопротивление термическому удару. В реальных условиях при эксплуатации материалы ФЭУ
подвержены мощному воздействию потоков заряженных частиц, поэтому уделяется большое
внимание их термоударной стойкости. При исследовании структуры и анализе фазового состава
материалов было установлено, что причиной указанного недостатка является многофазность
конечного продукта. Введение в исходную шихту реакционно-способных добавок стало одним из
решений данной проблемы. Невозможно получить всего многообразия материалов, ограничиваясь
лабораторными экспериментами. Поэтому возникает необходимость проведения
предварительного расчетно-теоретического анализа процесса горения в той или иной
двухкомпонентной системе. Для достижения цели использовалась математическая модель,
56
основанная на решении нестационарного двухмерного уравнения теплопроводности с подвижным
источником тепловыделения:
а(Т)
∙ (
Т
+
+
Т
) +
( )∙ρ
=
, (1)
где а(Т)- коэффициент температуропроводности, С(Т)- температурная зависимость теплоемкости, -
плотность образца,
q - объемный источник тепловыделения.
Уравнение (1) представляет собой краевую задачу и для ее решения можно задавать
начальные и граничные условия.
На рисунках 1,2 представлены распределения температуры синтеза по высоте образца в
начальный (рис.1) и конечный (рис.2) моменты времени соответственно. Горизонтальной чертой
обозначена температура реакции синтеза для системы WB, нижняя граница показывает температуры
образования фазовых составляющих конечного продукта: борида вольфрама, диборида вольфрама и
пентаборида дивольфрама.
Рис.1- Распределение температуры по высоте образца при различных значениях суммарного
теплового эффекта в момент времени 0,2 с после инициирования процесса синтеза
Рис.2- распределение температуры по высоте образца при различных значениях суммарного
теплового эффекта в момент времени 3,8 с после инициирования процесса синтеза.
Развиваемая температура горения в процессе синтеза зависит от количества добавленной
никель - алюминиевой добавки в исходную шахту реагентов. Предполагаем, что с изменением
температуры процесса горения фазовый состав конечного продукта будет меняться.
В лаборатории экспериментально синтезировали материалы с никель- алюминиевыми
добавками различного стехиометрического состава, введенными в различных количествах в
исходную шихту. В процессе синтеза идет значительное повышение температуры горения.
Рентгенофазовый анализ показал, что введение добавки приводит к изменению фазового состава
конечного продукта
57
Результаты, полученные в рамках модели теплового состояния и в приборном эксперименте,
представлены в таблице.
Таблица - Фазовый состав материала на основе WB при различных количествах никель -
алюминиевой добавки
Количество добавки, % вес.
Фазовые составляющие сиcтемы W-B, полученные в ходе:
Расчетных оценок на основании
разработанной модели
Лабораторных экспериментов
0
WB; WB
2
; W
2
B
5
WB; WB
2
; W
2
B
5
; WO
3
15
WB; WB
2
WB; WB
2
; WO
3
; Ni
3
Al
Полученные результаты расчетно-теоретических и приборных экспериментов показывают
удовлетворительное согласие между собой. Это позволяет говорить о конкретности модели, а также о
возможности подбора оптимальных начальных значений энергии источника тепловыделения, как
фактора, который позволяет управлять реакцией самораспространяющегося высокотемпературного
синтеза, и более того фазовым составом конечного продукта.
Достарыңызбен бөлісу: |